Computing the Determinant of the Distance Matrix of a Bicyclic Graph
- Autores
- Dratman, Ezequiel; Grippo, Luciano Norberto; Safe, Martin Dario; da Silva Jr., Celso M; Del Vecchio, Renata R.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Let G be a connected graph with vertex set V = {v1, ..., vn}. The distance d(vi, vj) between two vertices vi and vj is the number of edges of a shortest path linking them. The distance matrix of G is the n × n matrix such that its (i, j)-entry is equal to d(vi, vj). A formula to compute the determinant of this matrix in terms of the number of vertices was found when the graph either is a tree or is a unicyclic graph. For a byciclic graph, the determinant is known in the case where the cycles have no common edges. In this paper, we present some advances for the remaining cases; i.e., when the cycles share at least one edge. We also present a conjecture for the unsolved cases.
Fil: Dratman, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Safe, Martin Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: da Silva Jr., Celso M. Centro Federal de Educação Tecnológica; Brasil
Fil: Del Vecchio, Renata R.. Universidade Federal Fluminense; Brasil
LAGOS 2019: X Latin and American Algorithms, Graphs and Optimization Symposium
Belo Horizonte
Brasil
Universidad Federal de Minas Gerais - Materia
-
bicyclic graphs
determinant
distance matrix - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/130172
Ver los metadatos del registro completo
id |
CONICETDig_cd2ec9778aa50ccef61bdbe8f582a021 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/130172 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computing the Determinant of the Distance Matrix of a Bicyclic GraphDratman, EzequielGrippo, Luciano NorbertoSafe, Martin Darioda Silva Jr., Celso MDel Vecchio, Renata R.bicyclic graphsdeterminantdistance matrixhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let G be a connected graph with vertex set V = {v1, ..., vn}. The distance d(vi, vj) between two vertices vi and vj is the number of edges of a shortest path linking them. The distance matrix of G is the n × n matrix such that its (i, j)-entry is equal to d(vi, vj). A formula to compute the determinant of this matrix in terms of the number of vertices was found when the graph either is a tree or is a unicyclic graph. For a byciclic graph, the determinant is known in the case where the cycles have no common edges. In this paper, we present some advances for the remaining cases; i.e., when the cycles share at least one edge. We also present a conjecture for the unsolved cases.Fil: Dratman, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Safe, Martin Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: da Silva Jr., Celso M. Centro Federal de Educação Tecnológica; BrasilFil: Del Vecchio, Renata R.. Universidade Federal Fluminense; BrasilLAGOS 2019: X Latin and American Algorithms, Graphs and Optimization SymposiumBelo HorizonteBrasilUniversidad Federal de Minas GeraisElsevierCoutinho, GabrielKohayakawa, Yoshiharudos Santos, Vinicius2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectSimposioJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/130172Computing the Determinant of the Distance Matrix of a Bicyclic Graph; LAGOS 2019: X Latin and American Algorithms, Graphs and Optimization Symposium; Belo Horizonte; Brasil; 20191571-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.entcs.2019.08.037info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/346/suppl/Cinfo:eu-repo/semantics/altIdentifier/url/http://www.lagos2019.dcc.ufmg.br/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:03Zoai:ri.conicet.gov.ar:11336/130172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:03.849CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph |
title |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph |
spellingShingle |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph Dratman, Ezequiel bicyclic graphs determinant distance matrix |
title_short |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph |
title_full |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph |
title_fullStr |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph |
title_full_unstemmed |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph |
title_sort |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph |
dc.creator.none.fl_str_mv |
Dratman, Ezequiel Grippo, Luciano Norberto Safe, Martin Dario da Silva Jr., Celso M Del Vecchio, Renata R. |
author |
Dratman, Ezequiel |
author_facet |
Dratman, Ezequiel Grippo, Luciano Norberto Safe, Martin Dario da Silva Jr., Celso M Del Vecchio, Renata R. |
author_role |
author |
author2 |
Grippo, Luciano Norberto Safe, Martin Dario da Silva Jr., Celso M Del Vecchio, Renata R. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Coutinho, Gabriel Kohayakawa, Yoshiharu dos Santos, Vinicius |
dc.subject.none.fl_str_mv |
bicyclic graphs determinant distance matrix |
topic |
bicyclic graphs determinant distance matrix |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let G be a connected graph with vertex set V = {v1, ..., vn}. The distance d(vi, vj) between two vertices vi and vj is the number of edges of a shortest path linking them. The distance matrix of G is the n × n matrix such that its (i, j)-entry is equal to d(vi, vj). A formula to compute the determinant of this matrix in terms of the number of vertices was found when the graph either is a tree or is a unicyclic graph. For a byciclic graph, the determinant is known in the case where the cycles have no common edges. In this paper, we present some advances for the remaining cases; i.e., when the cycles share at least one edge. We also present a conjecture for the unsolved cases. Fil: Dratman, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Safe, Martin Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: da Silva Jr., Celso M. Centro Federal de Educação Tecnológica; Brasil Fil: Del Vecchio, Renata R.. Universidade Federal Fluminense; Brasil LAGOS 2019: X Latin and American Algorithms, Graphs and Optimization Symposium Belo Horizonte Brasil Universidad Federal de Minas Gerais |
description |
Let G be a connected graph with vertex set V = {v1, ..., vn}. The distance d(vi, vj) between two vertices vi and vj is the number of edges of a shortest path linking them. The distance matrix of G is the n × n matrix such that its (i, j)-entry is equal to d(vi, vj). A formula to compute the determinant of this matrix in terms of the number of vertices was found when the graph either is a tree or is a unicyclic graph. For a byciclic graph, the determinant is known in the case where the cycles have no common edges. In this paper, we present some advances for the remaining cases; i.e., when the cycles share at least one edge. We also present a conjecture for the unsolved cases. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Simposio Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/130172 Computing the Determinant of the Distance Matrix of a Bicyclic Graph; LAGOS 2019: X Latin and American Algorithms, Graphs and Optimization Symposium; Belo Horizonte; Brasil; 2019 1571-0661 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/130172 |
identifier_str_mv |
Computing the Determinant of the Distance Matrix of a Bicyclic Graph; LAGOS 2019: X Latin and American Algorithms, Graphs and Optimization Symposium; Belo Horizonte; Brasil; 2019 1571-0661 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.entcs.2019.08.037 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/346/suppl/C info:eu-repo/semantics/altIdentifier/url/http://www.lagos2019.dcc.ufmg.br/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614177351532544 |
score |
13.070432 |