Thermodynamics sheds light on the nature of dark matter galactic halos

Autores
Aceña, Andrés Esteban; Barranco, Juan; Bernal, Argelia; López, Ericson
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Today it is understood that our universe would not be the same without dark matter, which apparently has given rise to the formation of galaxies, stars and planets. Its existence is inferred mainly from the gravitational effect on the rotation curves of stars in spiral galaxies. The nature of dark matter remains unknown. Here we show that the dark matter halo is in a state of Bose-Einstein condensation, or at least the central region is. By using fittings of observational data, we can put an upper bound on the dark matter particle mass in the order of 12 eV/c2. We present the temperature profiles of galactic dark matter halos by considering that dark matter can be treated as a classical ideal gas, as an ideal Fermi gas, or as an ideal Bose gas. The only free parameter in the matter model is the mass of the dark matter particle. We obtain the temperature profiles by using the rotational velocity profile proposed by Persic, Salucci, and Stel (1996) and assuming that the dark matter halo is a self-gravitating stand-alone structure. From the temperature profiles, we conclude that the classical ideal gas and the ideal Fermi gas are not viable explanations for dark matter, while the ideal Bose gas is if the mass of the particle is low enough. If we take into account the relationship presented by Kormendy and Freeman (2004, 2016), Donato et al. (2009) and Gentile et al. (2009) between central density and core radius then we conclude that the central temperature of dark matter in all galaxies is the same. Remarkably, our results imply that basics thermodynamics principles could shed light on the mysterious nature of dark matter and if this is the case, those principles have to been taken into account in its description.
Fil: Aceña, Andrés Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Barranco, Juan. Universidad de Guanajuato; México
Fil: Bernal, Argelia. Universidad de Guanajuato; México
Fil: López, Ericson. Escuela Politécnica Nacional; Ecuador
Materia
DARK MATTER
GALACTIC HALO
THERMODYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/245080

id CONICETDig_ccefe57b2aef5ed30dc946efeac5018e
oai_identifier_str oai:ri.conicet.gov.ar:11336/245080
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermodynamics sheds light on the nature of dark matter galactic halosAceña, Andrés EstebanBarranco, JuanBernal, ArgeliaLópez, EricsonDARK MATTERGALACTIC HALOTHERMODYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Today it is understood that our universe would not be the same without dark matter, which apparently has given rise to the formation of galaxies, stars and planets. Its existence is inferred mainly from the gravitational effect on the rotation curves of stars in spiral galaxies. The nature of dark matter remains unknown. Here we show that the dark matter halo is in a state of Bose-Einstein condensation, or at least the central region is. By using fittings of observational data, we can put an upper bound on the dark matter particle mass in the order of 12 eV/c2. We present the temperature profiles of galactic dark matter halos by considering that dark matter can be treated as a classical ideal gas, as an ideal Fermi gas, or as an ideal Bose gas. The only free parameter in the matter model is the mass of the dark matter particle. We obtain the temperature profiles by using the rotational velocity profile proposed by Persic, Salucci, and Stel (1996) and assuming that the dark matter halo is a self-gravitating stand-alone structure. From the temperature profiles, we conclude that the classical ideal gas and the ideal Fermi gas are not viable explanations for dark matter, while the ideal Bose gas is if the mass of the particle is low enough. If we take into account the relationship presented by Kormendy and Freeman (2004, 2016), Donato et al. (2009) and Gentile et al. (2009) between central density and core radius then we conclude that the central temperature of dark matter in all galaxies is the same. Remarkably, our results imply that basics thermodynamics principles could shed light on the mysterious nature of dark matter and if this is the case, those principles have to been taken into account in its description.Fil: Aceña, Andrés Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Barranco, Juan. Universidad de Guanajuato; MéxicoFil: Bernal, Argelia. Universidad de Guanajuato; MéxicoFil: López, Ericson. Escuela Politécnica Nacional; EcuadorCornell University2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245080Aceña, Andrés Esteban; Barranco, Juan; Bernal, Argelia; López, Ericson; Thermodynamics sheds light on the nature of dark matter galactic halos; Cornell University; ArXiv.org; 2023; 12-2023; 1-72331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2310.15795info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2310.15795info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:05Zoai:ri.conicet.gov.ar:11336/245080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:06.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermodynamics sheds light on the nature of dark matter galactic halos
title Thermodynamics sheds light on the nature of dark matter galactic halos
spellingShingle Thermodynamics sheds light on the nature of dark matter galactic halos
Aceña, Andrés Esteban
DARK MATTER
GALACTIC HALO
THERMODYNAMICS
title_short Thermodynamics sheds light on the nature of dark matter galactic halos
title_full Thermodynamics sheds light on the nature of dark matter galactic halos
title_fullStr Thermodynamics sheds light on the nature of dark matter galactic halos
title_full_unstemmed Thermodynamics sheds light on the nature of dark matter galactic halos
title_sort Thermodynamics sheds light on the nature of dark matter galactic halos
dc.creator.none.fl_str_mv Aceña, Andrés Esteban
Barranco, Juan
Bernal, Argelia
López, Ericson
author Aceña, Andrés Esteban
author_facet Aceña, Andrés Esteban
Barranco, Juan
Bernal, Argelia
López, Ericson
author_role author
author2 Barranco, Juan
Bernal, Argelia
López, Ericson
author2_role author
author
author
dc.subject.none.fl_str_mv DARK MATTER
GALACTIC HALO
THERMODYNAMICS
topic DARK MATTER
GALACTIC HALO
THERMODYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Today it is understood that our universe would not be the same without dark matter, which apparently has given rise to the formation of galaxies, stars and planets. Its existence is inferred mainly from the gravitational effect on the rotation curves of stars in spiral galaxies. The nature of dark matter remains unknown. Here we show that the dark matter halo is in a state of Bose-Einstein condensation, or at least the central region is. By using fittings of observational data, we can put an upper bound on the dark matter particle mass in the order of 12 eV/c2. We present the temperature profiles of galactic dark matter halos by considering that dark matter can be treated as a classical ideal gas, as an ideal Fermi gas, or as an ideal Bose gas. The only free parameter in the matter model is the mass of the dark matter particle. We obtain the temperature profiles by using the rotational velocity profile proposed by Persic, Salucci, and Stel (1996) and assuming that the dark matter halo is a self-gravitating stand-alone structure. From the temperature profiles, we conclude that the classical ideal gas and the ideal Fermi gas are not viable explanations for dark matter, while the ideal Bose gas is if the mass of the particle is low enough. If we take into account the relationship presented by Kormendy and Freeman (2004, 2016), Donato et al. (2009) and Gentile et al. (2009) between central density and core radius then we conclude that the central temperature of dark matter in all galaxies is the same. Remarkably, our results imply that basics thermodynamics principles could shed light on the mysterious nature of dark matter and if this is the case, those principles have to been taken into account in its description.
Fil: Aceña, Andrés Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Barranco, Juan. Universidad de Guanajuato; México
Fil: Bernal, Argelia. Universidad de Guanajuato; México
Fil: López, Ericson. Escuela Politécnica Nacional; Ecuador
description Today it is understood that our universe would not be the same without dark matter, which apparently has given rise to the formation of galaxies, stars and planets. Its existence is inferred mainly from the gravitational effect on the rotation curves of stars in spiral galaxies. The nature of dark matter remains unknown. Here we show that the dark matter halo is in a state of Bose-Einstein condensation, or at least the central region is. By using fittings of observational data, we can put an upper bound on the dark matter particle mass in the order of 12 eV/c2. We present the temperature profiles of galactic dark matter halos by considering that dark matter can be treated as a classical ideal gas, as an ideal Fermi gas, or as an ideal Bose gas. The only free parameter in the matter model is the mass of the dark matter particle. We obtain the temperature profiles by using the rotational velocity profile proposed by Persic, Salucci, and Stel (1996) and assuming that the dark matter halo is a self-gravitating stand-alone structure. From the temperature profiles, we conclude that the classical ideal gas and the ideal Fermi gas are not viable explanations for dark matter, while the ideal Bose gas is if the mass of the particle is low enough. If we take into account the relationship presented by Kormendy and Freeman (2004, 2016), Donato et al. (2009) and Gentile et al. (2009) between central density and core radius then we conclude that the central temperature of dark matter in all galaxies is the same. Remarkably, our results imply that basics thermodynamics principles could shed light on the mysterious nature of dark matter and if this is the case, those principles have to been taken into account in its description.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/245080
Aceña, Andrés Esteban; Barranco, Juan; Bernal, Argelia; López, Ericson; Thermodynamics sheds light on the nature of dark matter galactic halos; Cornell University; ArXiv.org; 2023; 12-2023; 1-7
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/245080
identifier_str_mv Aceña, Andrés Esteban; Barranco, Juan; Bernal, Argelia; López, Ericson; Thermodynamics sheds light on the nature of dark matter galactic halos; Cornell University; ArXiv.org; 2023; 12-2023; 1-7
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2310.15795
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2310.15795
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cornell University
publisher.none.fl_str_mv Cornell University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270144861044736
score 13.13397