Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties

Autores
Salcedo Rodriguez, Karen Lizeth; Melo Quintero, Jhon Jaither; RodrÍguez Torres, Claudia Elena; Errico, Leonardo Antonio
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Oxides with the spinel structure are of great interest in different fields. In these oxides the electronic and magnetic properties are very sensitive to structural changes or to the presence of defects such as cation inversion, scale factors, or oxygen vacancies. These defects are at the origin of the incredibly wide variety of behaviours and properties that these oxides present, making it excellent candidates for applications as photovoltaic devices, lithium-ion batteries, photocatalysis, medical applications, etc. The continuous theoretical and experimental studies of oxides with the spinel structure has allowed in the last decade great advances in the understanding of the relationship between the structural and electronic changes at the nanoscale and the underlying mechanisms which activate the observed properties.As in other systems, the properties of the spinel oxides are strongly related to the synthesis conditions. In the particular case of Al-Fe-O spinels the thermodynamical conditions are an important factor in the final atomic arrangement. Depending on Fe/Al concentration two types of spinel structures can be formed: FeAl2O4 (Fe aluminate) and Fe2AlO4 (aluminium ferrite). The objective of the present work is to study from first principles calculations the structural, electronic and magnetic properties and the hyperfine interactions at the Fe sites in both systems. The main objective is to identify the lowest energy distributions of cations in the two cationic sites of the structures and the spin configuration of each system. The comparison between the calculated hyperfine parameters at the Fe sites and 57Fe Mossbauerexperimental result will be used to confirm our structural and magnetic model for each structure. The theoretical study was carried out using the Density Functional Theory (DFT) based first-principles Full-Potential Linearized Plane-Wave (FP-LAPW) method as implemented in the code Wien2k, in the framework of the generalized gradient approximation (GGA) + U formalism. To obtain the lowest energy structures for each system different Fe and Al distributions in the cationic sites and different spin configurations were considered. The results obtained allow us an analysis of the degree inversion in both Fe-Al-O compounds, the magnetic moments and the changes in the hyperfine parameters going from the Al-ferrite to the Fe-aluminate. Our results are also compared with different experimental results reported in the literature.
Fil: Salcedo Rodriguez, Karen Lizeth. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Melo Quintero, Jhon Jaither. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: RodrÍguez Torres, Claudia Elena. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Errico, Leonardo Antonio. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
International Conference on the Applications of the Mössbauer Effect
Brasov
Rumania
Institute of Materials Physics
Materia
AB INITIO CALCULATIONS
METAL OXIDES
MAGNETIC PROPERTIES
MOSSBAUER SPECTROSCOPY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/202809

id CONICETDig_cca493c2734b88dbc299bc4209880b8e
oai_identifier_str oai:ri.conicet.gov.ar:11336/202809
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne propertiesSalcedo Rodriguez, Karen LizethMelo Quintero, Jhon JaitherRodrÍguez Torres, Claudia ElenaErrico, Leonardo AntonioAB INITIO CALCULATIONSMETAL OXIDESMAGNETIC PROPERTIESMOSSBAUER SPECTROSCOPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Oxides with the spinel structure are of great interest in different fields. In these oxides the electronic and magnetic properties are very sensitive to structural changes or to the presence of defects such as cation inversion, scale factors, or oxygen vacancies. These defects are at the origin of the incredibly wide variety of behaviours and properties that these oxides present, making it excellent candidates for applications as photovoltaic devices, lithium-ion batteries, photocatalysis, medical applications, etc. The continuous theoretical and experimental studies of oxides with the spinel structure has allowed in the last decade great advances in the understanding of the relationship between the structural and electronic changes at the nanoscale and the underlying mechanisms which activate the observed properties.As in other systems, the properties of the spinel oxides are strongly related to the synthesis conditions. In the particular case of Al-Fe-O spinels the thermodynamical conditions are an important factor in the final atomic arrangement. Depending on Fe/Al concentration two types of spinel structures can be formed: FeAl2O4 (Fe aluminate) and Fe2AlO4 (aluminium ferrite). The objective of the present work is to study from first principles calculations the structural, electronic and magnetic properties and the hyperfine interactions at the Fe sites in both systems. The main objective is to identify the lowest energy distributions of cations in the two cationic sites of the structures and the spin configuration of each system. The comparison between the calculated hyperfine parameters at the Fe sites and 57Fe Mossbauerexperimental result will be used to confirm our structural and magnetic model for each structure. The theoretical study was carried out using the Density Functional Theory (DFT) based first-principles Full-Potential Linearized Plane-Wave (FP-LAPW) method as implemented in the code Wien2k, in the framework of the generalized gradient approximation (GGA) + U formalism. To obtain the lowest energy structures for each system different Fe and Al distributions in the cationic sites and different spin configurations were considered. The results obtained allow us an analysis of the degree inversion in both Fe-Al-O compounds, the magnetic moments and the changes in the hyperfine parameters going from the Al-ferrite to the Fe-aluminate. Our results are also compared with different experimental results reported in the literature.Fil: Salcedo Rodriguez, Karen Lizeth. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Melo Quintero, Jhon Jaither. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: RodrÍguez Torres, Claudia Elena. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Errico, Leonardo Antonio. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaInternational Conference on the Applications of the Mössbauer EffectBrasovRumaniaInstitute of Materials PhysicsHoria Hulubei2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202809Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties; International Conference on the Applications of the Mössbauer Effect; Brasov; Rumania; 2021; 132-132978-606-94603-3-7CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://infim.ro/ICAME-2021Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:59Zoai:ri.conicet.gov.ar:11336/202809instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:00.114CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
title Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
spellingShingle Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
Salcedo Rodriguez, Karen Lizeth
AB INITIO CALCULATIONS
METAL OXIDES
MAGNETIC PROPERTIES
MOSSBAUER SPECTROSCOPY
title_short Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
title_full Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
title_fullStr Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
title_full_unstemmed Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
title_sort Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties
dc.creator.none.fl_str_mv Salcedo Rodriguez, Karen Lizeth
Melo Quintero, Jhon Jaither
RodrÍguez Torres, Claudia Elena
Errico, Leonardo Antonio
author Salcedo Rodriguez, Karen Lizeth
author_facet Salcedo Rodriguez, Karen Lizeth
Melo Quintero, Jhon Jaither
RodrÍguez Torres, Claudia Elena
Errico, Leonardo Antonio
author_role author
author2 Melo Quintero, Jhon Jaither
RodrÍguez Torres, Claudia Elena
Errico, Leonardo Antonio
author2_role author
author
author
dc.subject.none.fl_str_mv AB INITIO CALCULATIONS
METAL OXIDES
MAGNETIC PROPERTIES
MOSSBAUER SPECTROSCOPY
topic AB INITIO CALCULATIONS
METAL OXIDES
MAGNETIC PROPERTIES
MOSSBAUER SPECTROSCOPY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Oxides with the spinel structure are of great interest in different fields. In these oxides the electronic and magnetic properties are very sensitive to structural changes or to the presence of defects such as cation inversion, scale factors, or oxygen vacancies. These defects are at the origin of the incredibly wide variety of behaviours and properties that these oxides present, making it excellent candidates for applications as photovoltaic devices, lithium-ion batteries, photocatalysis, medical applications, etc. The continuous theoretical and experimental studies of oxides with the spinel structure has allowed in the last decade great advances in the understanding of the relationship between the structural and electronic changes at the nanoscale and the underlying mechanisms which activate the observed properties.As in other systems, the properties of the spinel oxides are strongly related to the synthesis conditions. In the particular case of Al-Fe-O spinels the thermodynamical conditions are an important factor in the final atomic arrangement. Depending on Fe/Al concentration two types of spinel structures can be formed: FeAl2O4 (Fe aluminate) and Fe2AlO4 (aluminium ferrite). The objective of the present work is to study from first principles calculations the structural, electronic and magnetic properties and the hyperfine interactions at the Fe sites in both systems. The main objective is to identify the lowest energy distributions of cations in the two cationic sites of the structures and the spin configuration of each system. The comparison between the calculated hyperfine parameters at the Fe sites and 57Fe Mossbauerexperimental result will be used to confirm our structural and magnetic model for each structure. The theoretical study was carried out using the Density Functional Theory (DFT) based first-principles Full-Potential Linearized Plane-Wave (FP-LAPW) method as implemented in the code Wien2k, in the framework of the generalized gradient approximation (GGA) + U formalism. To obtain the lowest energy structures for each system different Fe and Al distributions in the cationic sites and different spin configurations were considered. The results obtained allow us an analysis of the degree inversion in both Fe-Al-O compounds, the magnetic moments and the changes in the hyperfine parameters going from the Al-ferrite to the Fe-aluminate. Our results are also compared with different experimental results reported in the literature.
Fil: Salcedo Rodriguez, Karen Lizeth. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Melo Quintero, Jhon Jaither. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: RodrÍguez Torres, Claudia Elena. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Errico, Leonardo Antonio. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
International Conference on the Applications of the Mössbauer Effect
Brasov
Rumania
Institute of Materials Physics
description Oxides with the spinel structure are of great interest in different fields. In these oxides the electronic and magnetic properties are very sensitive to structural changes or to the presence of defects such as cation inversion, scale factors, or oxygen vacancies. These defects are at the origin of the incredibly wide variety of behaviours and properties that these oxides present, making it excellent candidates for applications as photovoltaic devices, lithium-ion batteries, photocatalysis, medical applications, etc. The continuous theoretical and experimental studies of oxides with the spinel structure has allowed in the last decade great advances in the understanding of the relationship between the structural and electronic changes at the nanoscale and the underlying mechanisms which activate the observed properties.As in other systems, the properties of the spinel oxides are strongly related to the synthesis conditions. In the particular case of Al-Fe-O spinels the thermodynamical conditions are an important factor in the final atomic arrangement. Depending on Fe/Al concentration two types of spinel structures can be formed: FeAl2O4 (Fe aluminate) and Fe2AlO4 (aluminium ferrite). The objective of the present work is to study from first principles calculations the structural, electronic and magnetic properties and the hyperfine interactions at the Fe sites in both systems. The main objective is to identify the lowest energy distributions of cations in the two cationic sites of the structures and the spin configuration of each system. The comparison between the calculated hyperfine parameters at the Fe sites and 57Fe Mossbauerexperimental result will be used to confirm our structural and magnetic model for each structure. The theoretical study was carried out using the Density Functional Theory (DFT) based first-principles Full-Potential Linearized Plane-Wave (FP-LAPW) method as implemented in the code Wien2k, in the framework of the generalized gradient approximation (GGA) + U formalism. To obtain the lowest energy structures for each system different Fe and Al distributions in the cationic sites and different spin configurations were considered. The results obtained allow us an analysis of the degree inversion in both Fe-Al-O compounds, the magnetic moments and the changes in the hyperfine parameters going from the Al-ferrite to the Fe-aluminate. Our results are also compared with different experimental results reported in the literature.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/202809
Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties; International Conference on the Applications of the Mössbauer Effect; Brasov; Rumania; 2021; 132-132
978-606-94603-3-7
CONICET Digital
CONICET
url http://hdl.handle.net/11336/202809
identifier_str_mv Ab initio study of FeAl2O4 and Fe2AlO4: Analisys of structural, magnetic and hiperfyne properties; International Conference on the Applications of the Mössbauer Effect; Brasov; Rumania; 2021; 132-132
978-606-94603-3-7
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://infim.ro/ICAME-2021
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Horia Hulubei
publisher.none.fl_str_mv Horia Hulubei
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269778620710912
score 13.13397