The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling

Autores
Vega, M. C. V.; Bolmaro, Raul Eduardo; Ferrante, M.; Sordi, V. L.; Kliauga, A. M.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present investigation reports on the microstructure evolution, texture development, the nature of the grain boundaries and the tensile and deep drawing behaviour of commercial AA1050 Al processed by Equal Channel Angular Pressing (ECAP) plus rolling. Although in terms of final mechanical strength ECAP and rolling are indistinguishable, the deformation path is substantially different, and this has important consequences on both microstructure and texture. From the spatial distribution of high angle grain boundaries (HAGB) and low angle grain boundaries (LAGB), the fine microstructure and the crystallographic texture, it was concluded that the microstructure is oriented according to the external imposed flow: a spin movement in the ECAP process, which promotes the rotation of the cells inside the original grain, followed by a sliding movement caused by the rolling, leading to grain elongation. The ECAP process is more suitable to promote a higher fraction of HAGBs, and the same time as it reduces the intensity of the bulk crystallographic texture. As a consequence an increase of the penetration depth and deformation strain, as measured by the Erichsen test, was observed in samples processed by 8 ECAP passes, characterized by low texture intensity and a high degree of dynamic recrystallization.
Fil: Vega, M. C. V.. Universidade Federal do São Carlos; Brasil
Fil: Bolmaro, Raul Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Ferrante, M.. Universidade Federal do São Carlos; Brasil
Fil: Sordi, V. L.. Universidade Federal do São Carlos; Brasil
Fil: Kliauga, A. M.. Universidade Federal do São Carlos; Brasil
Materia
Aluminium
Ecap
Rolling
Severe Plastic Deformation
Texture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50250

id CONICETDig_cbdf8953d4fbdd1da1aa2eae97c6d98d
oai_identifier_str oai:ri.conicet.gov.ar:11336/50250
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rollingVega, M. C. V.Bolmaro, Raul EduardoFerrante, M.Sordi, V. L.Kliauga, A. M.AluminiumEcapRollingSevere Plastic DeformationTexturehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The present investigation reports on the microstructure evolution, texture development, the nature of the grain boundaries and the tensile and deep drawing behaviour of commercial AA1050 Al processed by Equal Channel Angular Pressing (ECAP) plus rolling. Although in terms of final mechanical strength ECAP and rolling are indistinguishable, the deformation path is substantially different, and this has important consequences on both microstructure and texture. From the spatial distribution of high angle grain boundaries (HAGB) and low angle grain boundaries (LAGB), the fine microstructure and the crystallographic texture, it was concluded that the microstructure is oriented according to the external imposed flow: a spin movement in the ECAP process, which promotes the rotation of the cells inside the original grain, followed by a sliding movement caused by the rolling, leading to grain elongation. The ECAP process is more suitable to promote a higher fraction of HAGBs, and the same time as it reduces the intensity of the bulk crystallographic texture. As a consequence an increase of the penetration depth and deformation strain, as measured by the Erichsen test, was observed in samples processed by 8 ECAP passes, characterized by low texture intensity and a high degree of dynamic recrystallization.Fil: Vega, M. C. V.. Universidade Federal do São Carlos; BrasilFil: Bolmaro, Raul Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Ferrante, M.. Universidade Federal do São Carlos; BrasilFil: Sordi, V. L.. Universidade Federal do São Carlos; BrasilFil: Kliauga, A. M.. Universidade Federal do São Carlos; BrasilElsevier Science Sa2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50250Vega, M. C. V.; Bolmaro, Raul Eduardo; Ferrante, M.; Sordi, V. L.; Kliauga, A. M.; The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 646; 10-2015; 154-1620921-5093CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2015.07.083info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:49Zoai:ri.conicet.gov.ar:11336/50250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:49.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
title The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
spellingShingle The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
Vega, M. C. V.
Aluminium
Ecap
Rolling
Severe Plastic Deformation
Texture
title_short The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
title_full The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
title_fullStr The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
title_full_unstemmed The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
title_sort The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling
dc.creator.none.fl_str_mv Vega, M. C. V.
Bolmaro, Raul Eduardo
Ferrante, M.
Sordi, V. L.
Kliauga, A. M.
author Vega, M. C. V.
author_facet Vega, M. C. V.
Bolmaro, Raul Eduardo
Ferrante, M.
Sordi, V. L.
Kliauga, A. M.
author_role author
author2 Bolmaro, Raul Eduardo
Ferrante, M.
Sordi, V. L.
Kliauga, A. M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Aluminium
Ecap
Rolling
Severe Plastic Deformation
Texture
topic Aluminium
Ecap
Rolling
Severe Plastic Deformation
Texture
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The present investigation reports on the microstructure evolution, texture development, the nature of the grain boundaries and the tensile and deep drawing behaviour of commercial AA1050 Al processed by Equal Channel Angular Pressing (ECAP) plus rolling. Although in terms of final mechanical strength ECAP and rolling are indistinguishable, the deformation path is substantially different, and this has important consequences on both microstructure and texture. From the spatial distribution of high angle grain boundaries (HAGB) and low angle grain boundaries (LAGB), the fine microstructure and the crystallographic texture, it was concluded that the microstructure is oriented according to the external imposed flow: a spin movement in the ECAP process, which promotes the rotation of the cells inside the original grain, followed by a sliding movement caused by the rolling, leading to grain elongation. The ECAP process is more suitable to promote a higher fraction of HAGBs, and the same time as it reduces the intensity of the bulk crystallographic texture. As a consequence an increase of the penetration depth and deformation strain, as measured by the Erichsen test, was observed in samples processed by 8 ECAP passes, characterized by low texture intensity and a high degree of dynamic recrystallization.
Fil: Vega, M. C. V.. Universidade Federal do São Carlos; Brasil
Fil: Bolmaro, Raul Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Ferrante, M.. Universidade Federal do São Carlos; Brasil
Fil: Sordi, V. L.. Universidade Federal do São Carlos; Brasil
Fil: Kliauga, A. M.. Universidade Federal do São Carlos; Brasil
description The present investigation reports on the microstructure evolution, texture development, the nature of the grain boundaries and the tensile and deep drawing behaviour of commercial AA1050 Al processed by Equal Channel Angular Pressing (ECAP) plus rolling. Although in terms of final mechanical strength ECAP and rolling are indistinguishable, the deformation path is substantially different, and this has important consequences on both microstructure and texture. From the spatial distribution of high angle grain boundaries (HAGB) and low angle grain boundaries (LAGB), the fine microstructure and the crystallographic texture, it was concluded that the microstructure is oriented according to the external imposed flow: a spin movement in the ECAP process, which promotes the rotation of the cells inside the original grain, followed by a sliding movement caused by the rolling, leading to grain elongation. The ECAP process is more suitable to promote a higher fraction of HAGBs, and the same time as it reduces the intensity of the bulk crystallographic texture. As a consequence an increase of the penetration depth and deformation strain, as measured by the Erichsen test, was observed in samples processed by 8 ECAP passes, characterized by low texture intensity and a high degree of dynamic recrystallization.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50250
Vega, M. C. V.; Bolmaro, Raul Eduardo; Ferrante, M.; Sordi, V. L.; Kliauga, A. M.; The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 646; 10-2015; 154-162
0921-5093
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50250
identifier_str_mv Vega, M. C. V.; Bolmaro, Raul Eduardo; Ferrante, M.; Sordi, V. L.; Kliauga, A. M.; The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 646; 10-2015; 154-162
0921-5093
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2015.07.083
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613566089396224
score 13.070432