Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization
- Autores
- Morales, Andrés Hernán; Hero, Johan Sebastian; Ledesma, Ana Estela; Martinez, Maria Alejandra; Navarro, María C.; Gómez, María I.; Romero, Cintia Mariana
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.
Fil: Morales, Andrés Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Hero, Johan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; Argentina
Fil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Navarro, María C.. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorganica. Cátedra de Química Inorganica; Argentina
Fil: Gómez, María I.. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorganica. Cátedra de Química Inorganica; Argentina
Fil: Romero, Cintia Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina - Materia
-
ADSORPTION
HYDROPHOBIC INTERACTIONS
INTERFACIAL HYPERACTIVATION
IONIC STRENGTH
LIPASE IMMOBILIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212150
Ver los metadatos del registro completo
id |
CONICETDig_cbd050b0a5ed54949ab3042fbcdfafd6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212150 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilizationMorales, Andrés HernánHero, Johan SebastianLedesma, Ana EstelaMartinez, Maria AlejandraNavarro, María C.Gómez, María I.Romero, Cintia MarianaADSORPTIONHYDROPHOBIC INTERACTIONSINTERFACIAL HYPERACTIVATIONIONIC STRENGTHLIPASE IMMOBILIZATIONhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.Fil: Morales, Andrés Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Hero, Johan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Navarro, María C.. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorganica. Cátedra de Química Inorganica; ArgentinaFil: Gómez, María I.. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorganica. Cátedra de Química Inorganica; ArgentinaFil: Romero, Cintia Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaElsevier Science2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212150Morales, Andrés Hernán; Hero, Johan Sebastian; Ledesma, Ana Estela; Martinez, Maria Alejandra; Navarro, María C.; et al.; Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization; Elsevier Science; International Journal of Biological Macromolecules; 253; 12-2023; 1-390141-8130CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0141813023035110info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijbiomac.2023.126615info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:56Zoai:ri.conicet.gov.ar:11336/212150instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:57.253CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization |
title |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization |
spellingShingle |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization Morales, Andrés Hernán ADSORPTION HYDROPHOBIC INTERACTIONS INTERFACIAL HYPERACTIVATION IONIC STRENGTH LIPASE IMMOBILIZATION |
title_short |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization |
title_full |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization |
title_fullStr |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization |
title_full_unstemmed |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization |
title_sort |
Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization |
dc.creator.none.fl_str_mv |
Morales, Andrés Hernán Hero, Johan Sebastian Ledesma, Ana Estela Martinez, Maria Alejandra Navarro, María C. Gómez, María I. Romero, Cintia Mariana |
author |
Morales, Andrés Hernán |
author_facet |
Morales, Andrés Hernán Hero, Johan Sebastian Ledesma, Ana Estela Martinez, Maria Alejandra Navarro, María C. Gómez, María I. Romero, Cintia Mariana |
author_role |
author |
author2 |
Hero, Johan Sebastian Ledesma, Ana Estela Martinez, Maria Alejandra Navarro, María C. Gómez, María I. Romero, Cintia Mariana |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ADSORPTION HYDROPHOBIC INTERACTIONS INTERFACIAL HYPERACTIVATION IONIC STRENGTH LIPASE IMMOBILIZATION |
topic |
ADSORPTION HYDROPHOBIC INTERACTIONS INTERFACIAL HYPERACTIVATION IONIC STRENGTH LIPASE IMMOBILIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces. Fil: Morales, Andrés Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Hero, Johan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; Argentina Fil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Navarro, María C.. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorganica. Cátedra de Química Inorganica; Argentina Fil: Gómez, María I.. Universidad Nacional de Tucuman. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorganica. Cátedra de Química Inorganica; Argentina Fil: Romero, Cintia Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina |
description |
Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212150 Morales, Andrés Hernán; Hero, Johan Sebastian; Ledesma, Ana Estela; Martinez, Maria Alejandra; Navarro, María C.; et al.; Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization; Elsevier Science; International Journal of Biological Macromolecules; 253; 12-2023; 1-39 0141-8130 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212150 |
identifier_str_mv |
Morales, Andrés Hernán; Hero, Johan Sebastian; Ledesma, Ana Estela; Martinez, Maria Alejandra; Navarro, María C.; et al.; Tuning surface interactions on MgFe2O4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization; Elsevier Science; International Journal of Biological Macromolecules; 253; 12-2023; 1-39 0141-8130 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0141813023035110 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijbiomac.2023.126615 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613643391467520 |
score |
13.070432 |