Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients

Autores
Alvarez Pontoriero, Orlando; Folguera Telichevsky, Andres; Gimenez, Mario Ernesto
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Ecuador Mw = 7.8 earthquake on April 16, 2016, ruptured a nearly 200 km long zone along the plate interface between Nazca and South American plates which is coincident with a seismic gap since 1942, when a Mw = 7.8 earthquake happened. This earthquake occurred at a margin characterized by moderately big to giant earthquakes such as the 1906 (Mw = 8.8). A heavily sedimented trench explains the abnormal lengths of the rupture zones in this system as inhibits the role of natural barriers on the propagation of rupture zones. High amount of sediment thickness is associated with tropical climates, high erosion rates and eastward Pacific dominant winds that provoke orographic rainfalls over the Pacific slope of the Ecuatorian Andes. Offshore sediment dispersion off the oceanic trench is controlled by a close arrangement of two aseismic ridges that hit the Costa Rica and South Ecuador margin respectively and a mid ocean ridge that separates the Cocos and Nazca plate trapping sediments. Gravity field and Ocean Circulation Explorer (GOCE) satellite data are used in this work to test the possible relationship between gravity signal and earthquake rupture structure as well as registered aftershock seismic activity. Reduced vertical gravity gradient shows a good correlation with rupture structure for certain degrees of the harmonic expansion and related depth of the causative mass; indicating, such as in other analyzed cases along the subduction margin, that fore-arc structure derived from density heterogeneities explains at a certain extent propagation of the rupture zones. In this analysis the rupture zone of the April 2016 Ecuador earthquake developed through a relatively low density zone of the fore-arc sliver. Finally, aftershock sequence nucleated around the area of maximum slips in the rupture zone, suggesting that heterogeneous density structure of the fore-arc determined from gravity data could be used in forecasting potential damaged zones associated with big ruptures along the subduction border.
Fil: Alvarez Pontoriero, Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina
Fil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Gimenez, Mario Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina
Materia
ECUADOR EARTHQUAKE
GRAVITY FIELD AND OCEAN CIRCULATION EXPLORER (GOCE)
RUPTURE ZONE
TRENCH SEDIMENTS
VERTICAL GRAVITY GRADIENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84853

id CONICETDig_cb748995c369045b7046dd4ae4bd1451
oai_identifier_str oai:ri.conicet.gov.ar:11336/84853
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradientsAlvarez Pontoriero, OrlandoFolguera Telichevsky, AndresGimenez, Mario ErnestoECUADOR EARTHQUAKEGRAVITY FIELD AND OCEAN CIRCULATION EXPLORER (GOCE)RUPTURE ZONETRENCH SEDIMENTSVERTICAL GRAVITY GRADIENThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The Ecuador Mw = 7.8 earthquake on April 16, 2016, ruptured a nearly 200 km long zone along the plate interface between Nazca and South American plates which is coincident with a seismic gap since 1942, when a Mw = 7.8 earthquake happened. This earthquake occurred at a margin characterized by moderately big to giant earthquakes such as the 1906 (Mw = 8.8). A heavily sedimented trench explains the abnormal lengths of the rupture zones in this system as inhibits the role of natural barriers on the propagation of rupture zones. High amount of sediment thickness is associated with tropical climates, high erosion rates and eastward Pacific dominant winds that provoke orographic rainfalls over the Pacific slope of the Ecuatorian Andes. Offshore sediment dispersion off the oceanic trench is controlled by a close arrangement of two aseismic ridges that hit the Costa Rica and South Ecuador margin respectively and a mid ocean ridge that separates the Cocos and Nazca plate trapping sediments. Gravity field and Ocean Circulation Explorer (GOCE) satellite data are used in this work to test the possible relationship between gravity signal and earthquake rupture structure as well as registered aftershock seismic activity. Reduced vertical gravity gradient shows a good correlation with rupture structure for certain degrees of the harmonic expansion and related depth of the causative mass; indicating, such as in other analyzed cases along the subduction margin, that fore-arc structure derived from density heterogeneities explains at a certain extent propagation of the rupture zones. In this analysis the rupture zone of the April 2016 Ecuador earthquake developed through a relatively low density zone of the fore-arc sliver. Finally, aftershock sequence nucleated around the area of maximum slips in the rupture zone, suggesting that heterogeneous density structure of the fore-arc determined from gravity data could be used in forecasting potential damaged zones associated with big ruptures along the subduction border.Fil: Alvarez Pontoriero, Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Gimenez, Mario Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaKeAi Communications2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84853Alvarez Pontoriero, Orlando; Folguera Telichevsky, Andres; Gimenez, Mario Ernesto; Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients; KeAi Communications; Geodesy and Geodynamics; 8; 1; 1-2017; 49-581674-9847CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geog.2017.01.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1674984717300149info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:27Zoai:ri.conicet.gov.ar:11336/84853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:28.083CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
title Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
spellingShingle Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
Alvarez Pontoriero, Orlando
ECUADOR EARTHQUAKE
GRAVITY FIELD AND OCEAN CIRCULATION EXPLORER (GOCE)
RUPTURE ZONE
TRENCH SEDIMENTS
VERTICAL GRAVITY GRADIENT
title_short Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
title_full Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
title_fullStr Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
title_full_unstemmed Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
title_sort Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
dc.creator.none.fl_str_mv Alvarez Pontoriero, Orlando
Folguera Telichevsky, Andres
Gimenez, Mario Ernesto
author Alvarez Pontoriero, Orlando
author_facet Alvarez Pontoriero, Orlando
Folguera Telichevsky, Andres
Gimenez, Mario Ernesto
author_role author
author2 Folguera Telichevsky, Andres
Gimenez, Mario Ernesto
author2_role author
author
dc.subject.none.fl_str_mv ECUADOR EARTHQUAKE
GRAVITY FIELD AND OCEAN CIRCULATION EXPLORER (GOCE)
RUPTURE ZONE
TRENCH SEDIMENTS
VERTICAL GRAVITY GRADIENT
topic ECUADOR EARTHQUAKE
GRAVITY FIELD AND OCEAN CIRCULATION EXPLORER (GOCE)
RUPTURE ZONE
TRENCH SEDIMENTS
VERTICAL GRAVITY GRADIENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Ecuador Mw = 7.8 earthquake on April 16, 2016, ruptured a nearly 200 km long zone along the plate interface between Nazca and South American plates which is coincident with a seismic gap since 1942, when a Mw = 7.8 earthquake happened. This earthquake occurred at a margin characterized by moderately big to giant earthquakes such as the 1906 (Mw = 8.8). A heavily sedimented trench explains the abnormal lengths of the rupture zones in this system as inhibits the role of natural barriers on the propagation of rupture zones. High amount of sediment thickness is associated with tropical climates, high erosion rates and eastward Pacific dominant winds that provoke orographic rainfalls over the Pacific slope of the Ecuatorian Andes. Offshore sediment dispersion off the oceanic trench is controlled by a close arrangement of two aseismic ridges that hit the Costa Rica and South Ecuador margin respectively and a mid ocean ridge that separates the Cocos and Nazca plate trapping sediments. Gravity field and Ocean Circulation Explorer (GOCE) satellite data are used in this work to test the possible relationship between gravity signal and earthquake rupture structure as well as registered aftershock seismic activity. Reduced vertical gravity gradient shows a good correlation with rupture structure for certain degrees of the harmonic expansion and related depth of the causative mass; indicating, such as in other analyzed cases along the subduction margin, that fore-arc structure derived from density heterogeneities explains at a certain extent propagation of the rupture zones. In this analysis the rupture zone of the April 2016 Ecuador earthquake developed through a relatively low density zone of the fore-arc sliver. Finally, aftershock sequence nucleated around the area of maximum slips in the rupture zone, suggesting that heterogeneous density structure of the fore-arc determined from gravity data could be used in forecasting potential damaged zones associated with big ruptures along the subduction border.
Fil: Alvarez Pontoriero, Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina
Fil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Gimenez, Mario Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina
description The Ecuador Mw = 7.8 earthquake on April 16, 2016, ruptured a nearly 200 km long zone along the plate interface between Nazca and South American plates which is coincident with a seismic gap since 1942, when a Mw = 7.8 earthquake happened. This earthquake occurred at a margin characterized by moderately big to giant earthquakes such as the 1906 (Mw = 8.8). A heavily sedimented trench explains the abnormal lengths of the rupture zones in this system as inhibits the role of natural barriers on the propagation of rupture zones. High amount of sediment thickness is associated with tropical climates, high erosion rates and eastward Pacific dominant winds that provoke orographic rainfalls over the Pacific slope of the Ecuatorian Andes. Offshore sediment dispersion off the oceanic trench is controlled by a close arrangement of two aseismic ridges that hit the Costa Rica and South Ecuador margin respectively and a mid ocean ridge that separates the Cocos and Nazca plate trapping sediments. Gravity field and Ocean Circulation Explorer (GOCE) satellite data are used in this work to test the possible relationship between gravity signal and earthquake rupture structure as well as registered aftershock seismic activity. Reduced vertical gravity gradient shows a good correlation with rupture structure for certain degrees of the harmonic expansion and related depth of the causative mass; indicating, such as in other analyzed cases along the subduction margin, that fore-arc structure derived from density heterogeneities explains at a certain extent propagation of the rupture zones. In this analysis the rupture zone of the April 2016 Ecuador earthquake developed through a relatively low density zone of the fore-arc sliver. Finally, aftershock sequence nucleated around the area of maximum slips in the rupture zone, suggesting that heterogeneous density structure of the fore-arc determined from gravity data could be used in forecasting potential damaged zones associated with big ruptures along the subduction border.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84853
Alvarez Pontoriero, Orlando; Folguera Telichevsky, Andres; Gimenez, Mario Ernesto; Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients; KeAi Communications; Geodesy and Geodynamics; 8; 1; 1-2017; 49-58
1674-9847
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84853
identifier_str_mv Alvarez Pontoriero, Orlando; Folguera Telichevsky, Andres; Gimenez, Mario Ernesto; Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients; KeAi Communications; Geodesy and Geodynamics; 8; 1; 1-2017; 49-58
1674-9847
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geog.2017.01.005
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1674984717300149
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv KeAi Communications
publisher.none.fl_str_mv KeAi Communications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268974031568896
score 13.13397