Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model

Autores
Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature.
Fil: Gleiser, Reinaldo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Ramirez, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
General Relativity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24891

id CONICETDig_cabfffb7e7b4ab88d5d3fcf1cb84127f
oai_identifier_str oai:ri.conicet.gov.ar:11336/24891
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell modelGleiser, Reinaldo JaimeRamirez, Marcos ArielGeneral Relativityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature.Fil: Gleiser, Reinaldo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Ramirez, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaIOP Publishing2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24891Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel; Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model; IOP Publishing; Classical and Quantum Gravity; 30; 8; 3-2013; 1-23; 0850080264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/30/8/085008info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/30/8/085008/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:13Zoai:ri.conicet.gov.ar:11336/24891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:14.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
title Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
spellingShingle Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
Gleiser, Reinaldo Jaime
General Relativity
title_short Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
title_full Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
title_fullStr Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
title_full_unstemmed Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
title_sort Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
dc.creator.none.fl_str_mv Gleiser, Reinaldo Jaime
Ramirez, Marcos Ariel
author Gleiser, Reinaldo Jaime
author_facet Gleiser, Reinaldo Jaime
Ramirez, Marcos Ariel
author_role author
author2 Ramirez, Marcos Ariel
author2_role author
dc.subject.none.fl_str_mv General Relativity
topic General Relativity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature.
Fil: Gleiser, Reinaldo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Ramirez, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24891
Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel; Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model; IOP Publishing; Classical and Quantum Gravity; 30; 8; 3-2013; 1-23; 085008
0264-9381
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24891
identifier_str_mv Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel; Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model; IOP Publishing; Classical and Quantum Gravity; 30; 8; 3-2013; 1-23; 085008
0264-9381
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/30/8/085008
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/30/8/085008/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980819432374272
score 12.993085