Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model
- Autores
- Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature.
Fil: Gleiser, Reinaldo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Ramirez, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
- General Relativity
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24891
Ver los metadatos del registro completo
id |
CONICETDig_cabfffb7e7b4ab88d5d3fcf1cb84127f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24891 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell modelGleiser, Reinaldo JaimeRamirez, Marcos ArielGeneral Relativityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature.Fil: Gleiser, Reinaldo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Ramirez, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaIOP Publishing2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24891Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel; Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model; IOP Publishing; Classical and Quantum Gravity; 30; 8; 3-2013; 1-23; 0850080264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/30/8/085008info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/30/8/085008/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:13Zoai:ri.conicet.gov.ar:11336/24891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:14.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model |
title |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model |
spellingShingle |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model Gleiser, Reinaldo Jaime General Relativity |
title_short |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model |
title_full |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model |
title_fullStr |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model |
title_full_unstemmed |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model |
title_sort |
Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model |
dc.creator.none.fl_str_mv |
Gleiser, Reinaldo Jaime Ramirez, Marcos Ariel |
author |
Gleiser, Reinaldo Jaime |
author_facet |
Gleiser, Reinaldo Jaime Ramirez, Marcos Ariel |
author_role |
author |
author2 |
Ramirez, Marcos Ariel |
author2_role |
author |
dc.subject.none.fl_str_mv |
General Relativity |
topic |
General Relativity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature. Fil: Gleiser, Reinaldo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Ramirez, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
We study the perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos–Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness, we obtain a proof of the stability of static solutions under these types of perturbations. The explicit expressions for the mode expansion are then used to obtain numerical values for some of the quasinormal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasinormal ringing displayed by the solutions is found to be in agreement with quasinormal modes found previously. Going back to the full relativistic equations of motion, we find their general linear form by expanding them to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary value problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasinormal ringing that results in the evolution of the system. We also discuss the relation of this work to some recent results on the same model that have appeared in the literature. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24891 Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel; Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model; IOP Publishing; Classical and Quantum Gravity; 30; 8; 3-2013; 1-23; 085008 0264-9381 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24891 |
identifier_str_mv |
Gleiser, Reinaldo Jaime; Ramirez, Marcos Ariel; Perturbative evolution of the static configurations, quasinormal modes and quasinormal ringing in the Apostolatos-Thorne cylindrical shell model; IOP Publishing; Classical and Quantum Gravity; 30; 8; 3-2013; 1-23; 085008 0264-9381 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/30/8/085008 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/30/8/085008/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980819432374272 |
score |
12.993085 |