The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia

Autores
Torres Molina, Teobaldo Enrique; Lima, Enio Junior; Calatayud, M. Pilar; Sanz, Beatriz; Ibarra, Alfonso; Fernández Pacheco, Rodrigo; Mayoral, Alvaro; Marquina, Clara; Ibarra, M. Ricardo; Goya, Gerardo Fabian
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fuid hyperthermia. Its validity is restricted to low applied felds and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specifc power absorption for highly anisotropic cobalt ferrite (CoFe2O4) magnetic nanoparticles with diferent average sizes and in diferent viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specifc Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.
Fil: Torres Molina, Teobaldo Enrique. Universidad de Zaragoza; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lima, Enio Junior. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Calatayud, M. Pilar. Universidad de Zaragoza; España
Fil: Sanz, Beatriz. Universidad de Zaragoza; España
Fil: Ibarra, Alfonso. Universidad de Zaragoza; España
Fil: Fernández Pacheco, Rodrigo. Universidad de Zaragoza; España
Fil: Mayoral, Alvaro. Shanghai Tech University; China
Fil: Marquina, Clara. Universidad de Zaragoza; España
Fil: Ibarra, M. Ricardo. Universidad de Zaragoza; España
Fil: Goya, Gerardo Fabian. Universidad de Zaragoza; España
Materia
Ferrite
Nanoparticle
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125266

id CONICETDig_caa8cb10934ce6d75719070989b42a85
oai_identifier_str oai:ri.conicet.gov.ar:11336/125266
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The relevance of Brownian relaxation as power absorption mechanism in Magnetic HyperthermiaTorres Molina, Teobaldo EnriqueLima, Enio JuniorCalatayud, M. PilarSanz, BeatrizIbarra, AlfonsoFernández Pacheco, RodrigoMayoral, AlvaroMarquina, ClaraIbarra, M. RicardoGoya, Gerardo FabianFerriteNanoparticlehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fuid hyperthermia. Its validity is restricted to low applied felds and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specifc power absorption for highly anisotropic cobalt ferrite (CoFe2O4) magnetic nanoparticles with diferent average sizes and in diferent viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specifc Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.Fil: Torres Molina, Teobaldo Enrique. Universidad de Zaragoza; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lima, Enio Junior. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Calatayud, M. Pilar. Universidad de Zaragoza; EspañaFil: Sanz, Beatriz. Universidad de Zaragoza; EspañaFil: Ibarra, Alfonso. Universidad de Zaragoza; EspañaFil: Fernández Pacheco, Rodrigo. Universidad de Zaragoza; EspañaFil: Mayoral, Alvaro. Shanghai Tech University; ChinaFil: Marquina, Clara. Universidad de Zaragoza; EspañaFil: Ibarra, M. Ricardo. Universidad de Zaragoza; EspañaFil: Goya, Gerardo Fabian. Universidad de Zaragoza; EspañaNature Publishing Group2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125266Torres Molina, Teobaldo Enrique; Lima, Enio Junior; Calatayud, M. Pilar; Sanz, Beatriz; Ibarra, Alfonso; et al.; The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia; Nature Publishing Group; Scientific Reports; 9; 1; 12-2019; 1-112045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-019-40341-yinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-40341-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:37:23Zoai:ri.conicet.gov.ar:11336/125266instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:37:23.612CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
title The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
spellingShingle The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
Torres Molina, Teobaldo Enrique
Ferrite
Nanoparticle
title_short The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
title_full The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
title_fullStr The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
title_full_unstemmed The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
title_sort The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
dc.creator.none.fl_str_mv Torres Molina, Teobaldo Enrique
Lima, Enio Junior
Calatayud, M. Pilar
Sanz, Beatriz
Ibarra, Alfonso
Fernández Pacheco, Rodrigo
Mayoral, Alvaro
Marquina, Clara
Ibarra, M. Ricardo
Goya, Gerardo Fabian
author Torres Molina, Teobaldo Enrique
author_facet Torres Molina, Teobaldo Enrique
Lima, Enio Junior
Calatayud, M. Pilar
Sanz, Beatriz
Ibarra, Alfonso
Fernández Pacheco, Rodrigo
Mayoral, Alvaro
Marquina, Clara
Ibarra, M. Ricardo
Goya, Gerardo Fabian
author_role author
author2 Lima, Enio Junior
Calatayud, M. Pilar
Sanz, Beatriz
Ibarra, Alfonso
Fernández Pacheco, Rodrigo
Mayoral, Alvaro
Marquina, Clara
Ibarra, M. Ricardo
Goya, Gerardo Fabian
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ferrite
Nanoparticle
topic Ferrite
Nanoparticle
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fuid hyperthermia. Its validity is restricted to low applied felds and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specifc power absorption for highly anisotropic cobalt ferrite (CoFe2O4) magnetic nanoparticles with diferent average sizes and in diferent viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specifc Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.
Fil: Torres Molina, Teobaldo Enrique. Universidad de Zaragoza; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lima, Enio Junior. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Calatayud, M. Pilar. Universidad de Zaragoza; España
Fil: Sanz, Beatriz. Universidad de Zaragoza; España
Fil: Ibarra, Alfonso. Universidad de Zaragoza; España
Fil: Fernández Pacheco, Rodrigo. Universidad de Zaragoza; España
Fil: Mayoral, Alvaro. Shanghai Tech University; China
Fil: Marquina, Clara. Universidad de Zaragoza; España
Fil: Ibarra, M. Ricardo. Universidad de Zaragoza; España
Fil: Goya, Gerardo Fabian. Universidad de Zaragoza; España
description The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fuid hyperthermia. Its validity is restricted to low applied felds and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specifc power absorption for highly anisotropic cobalt ferrite (CoFe2O4) magnetic nanoparticles with diferent average sizes and in diferent viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specifc Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125266
Torres Molina, Teobaldo Enrique; Lima, Enio Junior; Calatayud, M. Pilar; Sanz, Beatriz; Ibarra, Alfonso; et al.; The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia; Nature Publishing Group; Scientific Reports; 9; 1; 12-2019; 1-11
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125266
identifier_str_mv Torres Molina, Teobaldo Enrique; Lima, Enio Junior; Calatayud, M. Pilar; Sanz, Beatriz; Ibarra, Alfonso; et al.; The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia; Nature Publishing Group; Scientific Reports; 9; 1; 12-2019; 1-11
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-019-40341-y
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-019-40341-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782022021808128
score 12.982451