Process performance models in the optimization of multiproduct protein production plants

Autores
Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design.
Fil: Pinto, Jose M.. Universidade de Sao Paulo; Brasil
Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Iribarren, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Asenjo, Juan A.. Universidad de Chile; Chile
Materia
DESIGN
MULTIPRODUCT BATCH PLANT
OPTIMIZATION
PROCESS PERFORMANCE MODELS
PROTEIN PRODUCTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/138874

id CONICETDig_c9d0d335263457b1a576bb974b696c2e
oai_identifier_str oai:ri.conicet.gov.ar:11336/138874
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Process performance models in the optimization of multiproduct protein production plantsPinto, Jose M.Montagna, Jorge MarceloVecchietti, AldoIribarren, Oscar AlbertoAsenjo, Juan A.DESIGNMULTIPRODUCT BATCH PLANTOPTIMIZATIONPROCESS PERFORMANCE MODELSPROTEIN PRODUCTIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design.Fil: Pinto, Jose M.. Universidade de Sao Paulo; BrasilFil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Iribarren, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Asenjo, Juan A.. Universidad de Chile; ChileJohn Wiley & Sons Inc2001-07-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138874Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.; Process performance models in the optimization of multiproduct protein production plants; John Wiley & Sons Inc; Bioengineering And Biotechnology; 74; 6; 27-7-2001; 451-4650006-35921097-0290CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/bit.1136info:eu-repo/semantics/altIdentifier/doi/10.1002/bit.1136info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:38Zoai:ri.conicet.gov.ar:11336/138874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:38.557CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Process performance models in the optimization of multiproduct protein production plants
title Process performance models in the optimization of multiproduct protein production plants
spellingShingle Process performance models in the optimization of multiproduct protein production plants
Pinto, Jose M.
DESIGN
MULTIPRODUCT BATCH PLANT
OPTIMIZATION
PROCESS PERFORMANCE MODELS
PROTEIN PRODUCTION
title_short Process performance models in the optimization of multiproduct protein production plants
title_full Process performance models in the optimization of multiproduct protein production plants
title_fullStr Process performance models in the optimization of multiproduct protein production plants
title_full_unstemmed Process performance models in the optimization of multiproduct protein production plants
title_sort Process performance models in the optimization of multiproduct protein production plants
dc.creator.none.fl_str_mv Pinto, Jose M.
Montagna, Jorge Marcelo
Vecchietti, Aldo
Iribarren, Oscar Alberto
Asenjo, Juan A.
author Pinto, Jose M.
author_facet Pinto, Jose M.
Montagna, Jorge Marcelo
Vecchietti, Aldo
Iribarren, Oscar Alberto
Asenjo, Juan A.
author_role author
author2 Montagna, Jorge Marcelo
Vecchietti, Aldo
Iribarren, Oscar Alberto
Asenjo, Juan A.
author2_role author
author
author
author
dc.subject.none.fl_str_mv DESIGN
MULTIPRODUCT BATCH PLANT
OPTIMIZATION
PROCESS PERFORMANCE MODELS
PROTEIN PRODUCTION
topic DESIGN
MULTIPRODUCT BATCH PLANT
OPTIMIZATION
PROCESS PERFORMANCE MODELS
PROTEIN PRODUCTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design.
Fil: Pinto, Jose M.. Universidade de Sao Paulo; Brasil
Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Iribarren, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Asenjo, Juan A.. Universidad de Chile; Chile
description In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design.
publishDate 2001
dc.date.none.fl_str_mv 2001-07-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/138874
Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.; Process performance models in the optimization of multiproduct protein production plants; John Wiley & Sons Inc; Bioengineering And Biotechnology; 74; 6; 27-7-2001; 451-465
0006-3592
1097-0290
CONICET Digital
CONICET
url http://hdl.handle.net/11336/138874
identifier_str_mv Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.; Process performance models in the optimization of multiproduct protein production plants; John Wiley & Sons Inc; Bioengineering And Biotechnology; 74; 6; 27-7-2001; 451-465
0006-3592
1097-0290
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/bit.1136
info:eu-repo/semantics/altIdentifier/doi/10.1002/bit.1136
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981368230838272
score 12.48226