Process performance models in the optimization of multiproduct protein production plants
- Autores
- Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design.
Fil: Pinto, Jose M.. Universidade de Sao Paulo; Brasil
Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Iribarren, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Asenjo, Juan A.. Universidad de Chile; Chile - Materia
-
DESIGN
MULTIPRODUCT BATCH PLANT
OPTIMIZATION
PROCESS PERFORMANCE MODELS
PROTEIN PRODUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/138874
Ver los metadatos del registro completo
id |
CONICETDig_c9d0d335263457b1a576bb974b696c2e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/138874 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Process performance models in the optimization of multiproduct protein production plantsPinto, Jose M.Montagna, Jorge MarceloVecchietti, AldoIribarren, Oscar AlbertoAsenjo, Juan A.DESIGNMULTIPRODUCT BATCH PLANTOPTIMIZATIONPROCESS PERFORMANCE MODELSPROTEIN PRODUCTIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design.Fil: Pinto, Jose M.. Universidade de Sao Paulo; BrasilFil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Iribarren, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Asenjo, Juan A.. Universidad de Chile; ChileJohn Wiley & Sons Inc2001-07-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138874Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.; Process performance models in the optimization of multiproduct protein production plants; John Wiley & Sons Inc; Bioengineering And Biotechnology; 74; 6; 27-7-2001; 451-4650006-35921097-0290CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/bit.1136info:eu-repo/semantics/altIdentifier/doi/10.1002/bit.1136info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:38Zoai:ri.conicet.gov.ar:11336/138874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:38.557CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Process performance models in the optimization of multiproduct protein production plants |
title |
Process performance models in the optimization of multiproduct protein production plants |
spellingShingle |
Process performance models in the optimization of multiproduct protein production plants Pinto, Jose M. DESIGN MULTIPRODUCT BATCH PLANT OPTIMIZATION PROCESS PERFORMANCE MODELS PROTEIN PRODUCTION |
title_short |
Process performance models in the optimization of multiproduct protein production plants |
title_full |
Process performance models in the optimization of multiproduct protein production plants |
title_fullStr |
Process performance models in the optimization of multiproduct protein production plants |
title_full_unstemmed |
Process performance models in the optimization of multiproduct protein production plants |
title_sort |
Process performance models in the optimization of multiproduct protein production plants |
dc.creator.none.fl_str_mv |
Pinto, Jose M. Montagna, Jorge Marcelo Vecchietti, Aldo Iribarren, Oscar Alberto Asenjo, Juan A. |
author |
Pinto, Jose M. |
author_facet |
Pinto, Jose M. Montagna, Jorge Marcelo Vecchietti, Aldo Iribarren, Oscar Alberto Asenjo, Juan A. |
author_role |
author |
author2 |
Montagna, Jorge Marcelo Vecchietti, Aldo Iribarren, Oscar Alberto Asenjo, Juan A. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DESIGN MULTIPRODUCT BATCH PLANT OPTIMIZATION PROCESS PERFORMANCE MODELS PROTEIN PRODUCTION |
topic |
DESIGN MULTIPRODUCT BATCH PLANT OPTIMIZATION PROCESS PERFORMANCE MODELS PROTEIN PRODUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design. Fil: Pinto, Jose M.. Universidade de Sao Paulo; Brasil Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Iribarren, Oscar Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Asenjo, Juan A.. Universidad de Chile; Chile |
description |
In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-07-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/138874 Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.; Process performance models in the optimization of multiproduct protein production plants; John Wiley & Sons Inc; Bioengineering And Biotechnology; 74; 6; 27-7-2001; 451-465 0006-3592 1097-0290 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/138874 |
identifier_str_mv |
Pinto, Jose M.; Montagna, Jorge Marcelo; Vecchietti, Aldo; Iribarren, Oscar Alberto; Asenjo, Juan A.; Process performance models in the optimization of multiproduct protein production plants; John Wiley & Sons Inc; Bioengineering And Biotechnology; 74; 6; 27-7-2001; 451-465 0006-3592 1097-0290 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/bit.1136 info:eu-repo/semantics/altIdentifier/doi/10.1002/bit.1136 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981368230838272 |
score |
12.48226 |