Reaction processes among self-propelled particles
- Autores
- Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements.
Fil: Peruani San Román, Fernando Miguel. Université Côte d’Azur. Laboratoire J.A. Dieudonné; Francia
Fil: Sibona, Gustavo Javier. Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
REACTION PROCESSES
SELF PROPELLED
SIRS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91205
Ver los metadatos del registro completo
id |
CONICETDig_c8f073d822fea55f8c18f482b5d8a4f8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91205 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reaction processes among self-propelled particlesPeruani San Román, Fernando MiguelSibona, Gustavo JavierREACTION PROCESSESSELF PROPELLEDSIRShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements.Fil: Peruani San Román, Fernando Miguel. Université Côte d’Azur. Laboratoire J.A. Dieudonné; FranciaFil: Sibona, Gustavo Javier. Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaRoyal Society of Chemistry2018-12-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91205Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier; Reaction processes among self-propelled particles; Royal Society of Chemistry; Soft Matter; 15; 3; 12-12-2018; 497-5031744-683X1744-6848CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2018/SM/C8SM01502Cinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8SM01502Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:03Zoai:ri.conicet.gov.ar:11336/91205instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:03.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reaction processes among self-propelled particles |
title |
Reaction processes among self-propelled particles |
spellingShingle |
Reaction processes among self-propelled particles Peruani San Román, Fernando Miguel REACTION PROCESSES SELF PROPELLED SIRS |
title_short |
Reaction processes among self-propelled particles |
title_full |
Reaction processes among self-propelled particles |
title_fullStr |
Reaction processes among self-propelled particles |
title_full_unstemmed |
Reaction processes among self-propelled particles |
title_sort |
Reaction processes among self-propelled particles |
dc.creator.none.fl_str_mv |
Peruani San Román, Fernando Miguel Sibona, Gustavo Javier |
author |
Peruani San Román, Fernando Miguel |
author_facet |
Peruani San Román, Fernando Miguel Sibona, Gustavo Javier |
author_role |
author |
author2 |
Sibona, Gustavo Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
REACTION PROCESSES SELF PROPELLED SIRS |
topic |
REACTION PROCESSES SELF PROPELLED SIRS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements. Fil: Peruani San Román, Fernando Miguel. Université Côte d’Azur. Laboratoire J.A. Dieudonné; Francia Fil: Sibona, Gustavo Javier. Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91205 Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier; Reaction processes among self-propelled particles; Royal Society of Chemistry; Soft Matter; 15; 3; 12-12-2018; 497-503 1744-683X 1744-6848 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91205 |
identifier_str_mv |
Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier; Reaction processes among self-propelled particles; Royal Society of Chemistry; Soft Matter; 15; 3; 12-12-2018; 497-503 1744-683X 1744-6848 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2018/SM/C8SM01502C info:eu-repo/semantics/altIdentifier/doi/10.1039/C8SM01502C |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614345066020864 |
score |
13.070432 |