Reaction processes among self-propelled particles

Autores
Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements.
Fil: Peruani San Román, Fernando Miguel. Université Côte d’Azur. Laboratoire J.A. Dieudonné; Francia
Fil: Sibona, Gustavo Javier. Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
REACTION PROCESSES
SELF PROPELLED
SIRS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91205

id CONICETDig_c8f073d822fea55f8c18f482b5d8a4f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/91205
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reaction processes among self-propelled particlesPeruani San Román, Fernando MiguelSibona, Gustavo JavierREACTION PROCESSESSELF PROPELLEDSIRShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements.Fil: Peruani San Román, Fernando Miguel. Université Côte d’Azur. Laboratoire J.A. Dieudonné; FranciaFil: Sibona, Gustavo Javier. Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaRoyal Society of Chemistry2018-12-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91205Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier; Reaction processes among self-propelled particles; Royal Society of Chemistry; Soft Matter; 15; 3; 12-12-2018; 497-5031744-683X1744-6848CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2018/SM/C8SM01502Cinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8SM01502Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:03Zoai:ri.conicet.gov.ar:11336/91205instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:03.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reaction processes among self-propelled particles
title Reaction processes among self-propelled particles
spellingShingle Reaction processes among self-propelled particles
Peruani San Román, Fernando Miguel
REACTION PROCESSES
SELF PROPELLED
SIRS
title_short Reaction processes among self-propelled particles
title_full Reaction processes among self-propelled particles
title_fullStr Reaction processes among self-propelled particles
title_full_unstemmed Reaction processes among self-propelled particles
title_sort Reaction processes among self-propelled particles
dc.creator.none.fl_str_mv Peruani San Román, Fernando Miguel
Sibona, Gustavo Javier
author Peruani San Román, Fernando Miguel
author_facet Peruani San Román, Fernando Miguel
Sibona, Gustavo Javier
author_role author
author2 Sibona, Gustavo Javier
author2_role author
dc.subject.none.fl_str_mv REACTION PROCESSES
SELF PROPELLED
SIRS
topic REACTION PROCESSES
SELF PROPELLED
SIRS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements.
Fil: Peruani San Román, Fernando Miguel. Université Côte d’Azur. Laboratoire J.A. Dieudonné; Francia
Fil: Sibona, Gustavo Javier. Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description We study a system of self-propelled disks that perform run-and-tumble motion, where particles can adopt more than one internal state. One of those internal states can be transmitted to other particle if the particle carrying this state maintains physical contact with another particle for a finite period of time. We refer to this process as a reaction process and to the different internal states as particle species, making an analogy to chemical reactions. The studied system may fall into an absorbing phase, where due to the disappearance of one of the particle species no further reaction can occur, or may remain in an active phase where particles constantly react. By combining individual-based simulations and mean-field arguments, we study the dependency of the equilibrium densities of particle species on motility parameters, specifically the active speed v 0 and tumbling frequency λ. We find that the equilibrium densities of particle species exhibit two very distinct, non-trivial scaling regimes, with v 0 and λ depending on whether the system is in the so-called ballistic or diffusive regime. Our mean-field estimates lead to an effective renormalization of reaction rates that allow building the phase-diagram v 0 -λ that separates the absorbing and active phases. We find an excellent agreement between numerical simulations and mean-field estimates. This study is a necessary step towards an understanding of phase transitions into absorbing states in active systems and sheds light on the spreading of information/signaling among moving elements.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91205
Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier; Reaction processes among self-propelled particles; Royal Society of Chemistry; Soft Matter; 15; 3; 12-12-2018; 497-503
1744-683X
1744-6848
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91205
identifier_str_mv Peruani San Román, Fernando Miguel; Sibona, Gustavo Javier; Reaction processes among self-propelled particles; Royal Society of Chemistry; Soft Matter; 15; 3; 12-12-2018; 497-503
1744-683X
1744-6848
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2018/SM/C8SM01502C
info:eu-repo/semantics/altIdentifier/doi/10.1039/C8SM01502C
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614345066020864
score 13.070432