Cow-calf operation management clusters, Argentina
- Autores
- Vistarop, Vanesa Antonela; Larriestra, Alejandro Jose; Vissio, Claudina; Demateis Llera, Federico; Yaful, Graciela Noemi; Blanco, Carlos Jorge; Bartolomé, Julián A.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This research was conducted to gain more insight into the productivity and good management practice (GMP) adoption of cow-calf operations in Río Negro Province, Argentina. The objectives were to characterize productivity and management profiles according to GMP adoption, identify herd clusters, and describe the performance and productivity within each specific cluster. A survey sample of 142 out of 1,229 cow-calf and cow-calf to-finish operations from Avellaneda and Pichi Mahuida counties provided data on productivity, herd structure, and GMP adoption. The productivity variables, calves per 100 cows (C/100 c) and calves per 100 ha (C/100 ha), were described statistically using quartiles, and differences by county according to the three-month breeding season adoption were explored. Moreover, herd structure and GMP-relatedvariables were subjected to multiple correspondence analysis (MCA) with complete-link hierarchical cluster analysis to typify the operations. A total of 127 out of 142 farmers provided productivity data, showing median values of 79.00 C/100 c (Q1= 67.00; Q3= 85.00) and 4.58 C/100 ha (Q1= 2.78; Q3= 8.00). A Significant difference was found between three-month and year-round breeding operations for both variables (82.00 C/100 c vs 75.50 C/100 c; P=0.0006 and 5.60 C/100 ha vs 3.97 C/100 ha; P=0.0072). Three farm clusters (Cl) were identified: Cl 1 (low adoption), Cl 2 (moderate transition), and Cl 3 (GMP-oriented). Cl 3 showed the highest GMP adoption level, and a significant difference was found in the C/100 c variable (85.00 C/100 c vs. 76.00 and 80.00 for Cl 1 and 2, respectively; P=0.0233). Cluster profiling enhances our understanding of the cow-calf operation segment and highlights the importance of GMP adoption for improving productivity in cow-calf operations. The results should be interpreted with caution due to the limitations of a cross-sectional study showing correlational associations. Nevertheless, it provides insights for designing science-based and targeted interventions to improve the performance of the beef cattle industry in Río Negro, Argentina, and may be the basis for prospective or interventions studies in the future.
Fil: Vistarop, Vanesa Antonela. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Larriestra, Alejandro Jose. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Patología Animal; Argentina. Universidad Nacional de Villa María; Argentina
Fil: Vissio, Claudina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Patología Animal; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina
Fil: Demateis Llera, Federico. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Yaful, Graciela Noemi. Universidad Nacional de Río Negro; Argentina
Fil: Blanco, Carlos Jorge. Universidad de Buenos Aires; Argentina
Fil: Bartolomé, Julián A.. Universidad Nacional de La Pampa; Argentina - Materia
-
clusters
cow-calf operation
beef cattle
good management practices
survey
typification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275132
Ver los metadatos del registro completo
| id |
CONICETDig_c888d98b3627896999b56322ccd43cf5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275132 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Cow-calf operation management clusters, ArgentinaVistarop, Vanesa AntonelaLarriestra, Alejandro JoseVissio, ClaudinaDemateis Llera, FedericoYaful, Graciela NoemiBlanco, Carlos JorgeBartolomé, Julián A.clusterscow-calf operationbeef cattlegood management practicessurveytypificationhttps://purl.org/becyt/ford/4.3https://purl.org/becyt/ford/4This research was conducted to gain more insight into the productivity and good management practice (GMP) adoption of cow-calf operations in Río Negro Province, Argentina. The objectives were to characterize productivity and management profiles according to GMP adoption, identify herd clusters, and describe the performance and productivity within each specific cluster. A survey sample of 142 out of 1,229 cow-calf and cow-calf to-finish operations from Avellaneda and Pichi Mahuida counties provided data on productivity, herd structure, and GMP adoption. The productivity variables, calves per 100 cows (C/100 c) and calves per 100 ha (C/100 ha), were described statistically using quartiles, and differences by county according to the three-month breeding season adoption were explored. Moreover, herd structure and GMP-relatedvariables were subjected to multiple correspondence analysis (MCA) with complete-link hierarchical cluster analysis to typify the operations. A total of 127 out of 142 farmers provided productivity data, showing median values of 79.00 C/100 c (Q1= 67.00; Q3= 85.00) and 4.58 C/100 ha (Q1= 2.78; Q3= 8.00). A Significant difference was found between three-month and year-round breeding operations for both variables (82.00 C/100 c vs 75.50 C/100 c; P=0.0006 and 5.60 C/100 ha vs 3.97 C/100 ha; P=0.0072). Three farm clusters (Cl) were identified: Cl 1 (low adoption), Cl 2 (moderate transition), and Cl 3 (GMP-oriented). Cl 3 showed the highest GMP adoption level, and a significant difference was found in the C/100 c variable (85.00 C/100 c vs. 76.00 and 80.00 for Cl 1 and 2, respectively; P=0.0233). Cluster profiling enhances our understanding of the cow-calf operation segment and highlights the importance of GMP adoption for improving productivity in cow-calf operations. The results should be interpreted with caution due to the limitations of a cross-sectional study showing correlational associations. Nevertheless, it provides insights for designing science-based and targeted interventions to improve the performance of the beef cattle industry in Río Negro, Argentina, and may be the basis for prospective or interventions studies in the future.Fil: Vistarop, Vanesa Antonela. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Larriestra, Alejandro Jose. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Patología Animal; Argentina. Universidad Nacional de Villa María; ArgentinaFil: Vissio, Claudina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Patología Animal; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Demateis Llera, Federico. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Yaful, Graciela Noemi. Universidad Nacional de Río Negro; ArgentinaFil: Blanco, Carlos Jorge. Universidad de Buenos Aires; ArgentinaFil: Bartolomé, Julián A.. Universidad Nacional de La Pampa; ArgentinaOxford University Press2025-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275132Vistarop, Vanesa Antonela; Larriestra, Alejandro Jose; Vissio, Claudina; Demateis Llera, Federico; Yaful, Graciela Noemi; et al.; Cow-calf operation management clusters, Argentina; Oxford University Press; Translational Animal Scienc; 9; 9-2025; 1-442573-2102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/tas/advance-article/doi/10.1093/tas/txaf110/8248964info:eu-repo/semantics/altIdentifier/doi/10.1093/tas/txaf110info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:18:15Zoai:ri.conicet.gov.ar:11336/275132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:18:15.676CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Cow-calf operation management clusters, Argentina |
| title |
Cow-calf operation management clusters, Argentina |
| spellingShingle |
Cow-calf operation management clusters, Argentina Vistarop, Vanesa Antonela clusters cow-calf operation beef cattle good management practices survey typification |
| title_short |
Cow-calf operation management clusters, Argentina |
| title_full |
Cow-calf operation management clusters, Argentina |
| title_fullStr |
Cow-calf operation management clusters, Argentina |
| title_full_unstemmed |
Cow-calf operation management clusters, Argentina |
| title_sort |
Cow-calf operation management clusters, Argentina |
| dc.creator.none.fl_str_mv |
Vistarop, Vanesa Antonela Larriestra, Alejandro Jose Vissio, Claudina Demateis Llera, Federico Yaful, Graciela Noemi Blanco, Carlos Jorge Bartolomé, Julián A. |
| author |
Vistarop, Vanesa Antonela |
| author_facet |
Vistarop, Vanesa Antonela Larriestra, Alejandro Jose Vissio, Claudina Demateis Llera, Federico Yaful, Graciela Noemi Blanco, Carlos Jorge Bartolomé, Julián A. |
| author_role |
author |
| author2 |
Larriestra, Alejandro Jose Vissio, Claudina Demateis Llera, Federico Yaful, Graciela Noemi Blanco, Carlos Jorge Bartolomé, Julián A. |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
clusters cow-calf operation beef cattle good management practices survey typification |
| topic |
clusters cow-calf operation beef cattle good management practices survey typification |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.3 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
This research was conducted to gain more insight into the productivity and good management practice (GMP) adoption of cow-calf operations in Río Negro Province, Argentina. The objectives were to characterize productivity and management profiles according to GMP adoption, identify herd clusters, and describe the performance and productivity within each specific cluster. A survey sample of 142 out of 1,229 cow-calf and cow-calf to-finish operations from Avellaneda and Pichi Mahuida counties provided data on productivity, herd structure, and GMP adoption. The productivity variables, calves per 100 cows (C/100 c) and calves per 100 ha (C/100 ha), were described statistically using quartiles, and differences by county according to the three-month breeding season adoption were explored. Moreover, herd structure and GMP-relatedvariables were subjected to multiple correspondence analysis (MCA) with complete-link hierarchical cluster analysis to typify the operations. A total of 127 out of 142 farmers provided productivity data, showing median values of 79.00 C/100 c (Q1= 67.00; Q3= 85.00) and 4.58 C/100 ha (Q1= 2.78; Q3= 8.00). A Significant difference was found between three-month and year-round breeding operations for both variables (82.00 C/100 c vs 75.50 C/100 c; P=0.0006 and 5.60 C/100 ha vs 3.97 C/100 ha; P=0.0072). Three farm clusters (Cl) were identified: Cl 1 (low adoption), Cl 2 (moderate transition), and Cl 3 (GMP-oriented). Cl 3 showed the highest GMP adoption level, and a significant difference was found in the C/100 c variable (85.00 C/100 c vs. 76.00 and 80.00 for Cl 1 and 2, respectively; P=0.0233). Cluster profiling enhances our understanding of the cow-calf operation segment and highlights the importance of GMP adoption for improving productivity in cow-calf operations. The results should be interpreted with caution due to the limitations of a cross-sectional study showing correlational associations. Nevertheless, it provides insights for designing science-based and targeted interventions to improve the performance of the beef cattle industry in Río Negro, Argentina, and may be the basis for prospective or interventions studies in the future. Fil: Vistarop, Vanesa Antonela. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Larriestra, Alejandro Jose. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Patología Animal; Argentina. Universidad Nacional de Villa María; Argentina Fil: Vissio, Claudina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Patología Animal; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina Fil: Demateis Llera, Federico. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: Yaful, Graciela Noemi. Universidad Nacional de Río Negro; Argentina Fil: Blanco, Carlos Jorge. Universidad de Buenos Aires; Argentina Fil: Bartolomé, Julián A.. Universidad Nacional de La Pampa; Argentina |
| description |
This research was conducted to gain more insight into the productivity and good management practice (GMP) adoption of cow-calf operations in Río Negro Province, Argentina. The objectives were to characterize productivity and management profiles according to GMP adoption, identify herd clusters, and describe the performance and productivity within each specific cluster. A survey sample of 142 out of 1,229 cow-calf and cow-calf to-finish operations from Avellaneda and Pichi Mahuida counties provided data on productivity, herd structure, and GMP adoption. The productivity variables, calves per 100 cows (C/100 c) and calves per 100 ha (C/100 ha), were described statistically using quartiles, and differences by county according to the three-month breeding season adoption were explored. Moreover, herd structure and GMP-relatedvariables were subjected to multiple correspondence analysis (MCA) with complete-link hierarchical cluster analysis to typify the operations. A total of 127 out of 142 farmers provided productivity data, showing median values of 79.00 C/100 c (Q1= 67.00; Q3= 85.00) and 4.58 C/100 ha (Q1= 2.78; Q3= 8.00). A Significant difference was found between three-month and year-round breeding operations for both variables (82.00 C/100 c vs 75.50 C/100 c; P=0.0006 and 5.60 C/100 ha vs 3.97 C/100 ha; P=0.0072). Three farm clusters (Cl) were identified: Cl 1 (low adoption), Cl 2 (moderate transition), and Cl 3 (GMP-oriented). Cl 3 showed the highest GMP adoption level, and a significant difference was found in the C/100 c variable (85.00 C/100 c vs. 76.00 and 80.00 for Cl 1 and 2, respectively; P=0.0233). Cluster profiling enhances our understanding of the cow-calf operation segment and highlights the importance of GMP adoption for improving productivity in cow-calf operations. The results should be interpreted with caution due to the limitations of a cross-sectional study showing correlational associations. Nevertheless, it provides insights for designing science-based and targeted interventions to improve the performance of the beef cattle industry in Río Negro, Argentina, and may be the basis for prospective or interventions studies in the future. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275132 Vistarop, Vanesa Antonela; Larriestra, Alejandro Jose; Vissio, Claudina; Demateis Llera, Federico; Yaful, Graciela Noemi; et al.; Cow-calf operation management clusters, Argentina; Oxford University Press; Translational Animal Scienc; 9; 9-2025; 1-44 2573-2102 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275132 |
| identifier_str_mv |
Vistarop, Vanesa Antonela; Larriestra, Alejandro Jose; Vissio, Claudina; Demateis Llera, Federico; Yaful, Graciela Noemi; et al.; Cow-calf operation management clusters, Argentina; Oxford University Press; Translational Animal Scienc; 9; 9-2025; 1-44 2573-2102 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/tas/advance-article/doi/10.1093/tas/txaf110/8248964 info:eu-repo/semantics/altIdentifier/doi/10.1093/tas/txaf110 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335042248835072 |
| score |
12.952241 |