A nonequilibrium-potential approach to competition in neural populations
- Autores
- Deza, Roberto Raul; Deza, Juan Ignacio; Martinez, Nataniel; Mejías, Jorge F.; Wio, Horacio S.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Energy landscapes are a highly useful aid for the understanding of dynamical systems, and a particularly valuable tool for their analysis. For a broad class of rate neural-network models of relevance in neuroscience, we derive a global Lyapunov function which provides an energy landscape without any symmetry constraint. This newly obtained "nonequilibrium potential" (NEP)-the first one obtained for a model of neural circuits-predicts with high accuracy the outcomes of the dynamics in the globally stable cases studied here. Common features of the models in this class are bistability-with implications for working memory and slow neural oscillations-and population bursts, associated with signal detection in neuroscience. Instead, limit cycles are not found for the conditions in which the NEP is defined. Their nonexistence can be proven by resorting to the Bendixson-Dulac theorem, at least when the NEP remains positive and in the (also generic) singular limit of these models. This NEP constitutes a powerful tool to understand average neural network dynamics from a more formal standpoint, and will also be of help in the description of large heterogeneous neural networks.
Fil: Deza, Roberto Raul. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Deza, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Atlantida Argentina; Argentina
Fil: Martinez, Nataniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina
Fil: Mejías, Jorge F.. Swammerdam Institute For Life Sciences; Países Bajos
Fil: Wio, Horacio S.. Universitat de Les Illes Balears; España - Materia
-
BISTABILITY
ENERGY LANDSCAPE
FIRING RATE DYNAMICS
NEURAL NETWORKS
NONEQUILIBRIUM POTENTIAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/120231
Ver los metadatos del registro completo
id |
CONICETDig_c740c6b3bf082526b4510e07750cb3c4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/120231 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A nonequilibrium-potential approach to competition in neural populationsDeza, Roberto RaulDeza, Juan IgnacioMartinez, NatanielMejías, Jorge F.Wio, Horacio S.BISTABILITYENERGY LANDSCAPEFIRING RATE DYNAMICSNEURAL NETWORKSNONEQUILIBRIUM POTENTIALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Energy landscapes are a highly useful aid for the understanding of dynamical systems, and a particularly valuable tool for their analysis. For a broad class of rate neural-network models of relevance in neuroscience, we derive a global Lyapunov function which provides an energy landscape without any symmetry constraint. This newly obtained "nonequilibrium potential" (NEP)-the first one obtained for a model of neural circuits-predicts with high accuracy the outcomes of the dynamics in the globally stable cases studied here. Common features of the models in this class are bistability-with implications for working memory and slow neural oscillations-and population bursts, associated with signal detection in neuroscience. Instead, limit cycles are not found for the conditions in which the NEP is defined. Their nonexistence can be proven by resorting to the Bendixson-Dulac theorem, at least when the NEP remains positive and in the (also generic) singular limit of these models. This NEP constitutes a powerful tool to understand average neural network dynamics from a more formal standpoint, and will also be of help in the description of large heterogeneous neural networks.Fil: Deza, Roberto Raul. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Deza, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Atlantida Argentina; ArgentinaFil: Martinez, Nataniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Mejías, Jorge F.. Swammerdam Institute For Life Sciences; Países BajosFil: Wio, Horacio S.. Universitat de Les Illes Balears; EspañaFrontiers Media S.A.2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/120231Deza, Roberto Raul; Deza, Juan Ignacio; Martinez, Nataniel; Mejías, Jorge F.; Wio, Horacio S.; A nonequilibrium-potential approach to competition in neural populations; Frontiers Media S.A.; Frontiers in Physics; 6; JAN; 1-20192296-424XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphy.2018.00154/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fphy.2018.00154info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:30:29Zoai:ri.conicet.gov.ar:11336/120231instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:30:29.665CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A nonequilibrium-potential approach to competition in neural populations |
title |
A nonequilibrium-potential approach to competition in neural populations |
spellingShingle |
A nonequilibrium-potential approach to competition in neural populations Deza, Roberto Raul BISTABILITY ENERGY LANDSCAPE FIRING RATE DYNAMICS NEURAL NETWORKS NONEQUILIBRIUM POTENTIAL |
title_short |
A nonequilibrium-potential approach to competition in neural populations |
title_full |
A nonequilibrium-potential approach to competition in neural populations |
title_fullStr |
A nonequilibrium-potential approach to competition in neural populations |
title_full_unstemmed |
A nonequilibrium-potential approach to competition in neural populations |
title_sort |
A nonequilibrium-potential approach to competition in neural populations |
dc.creator.none.fl_str_mv |
Deza, Roberto Raul Deza, Juan Ignacio Martinez, Nataniel Mejías, Jorge F. Wio, Horacio S. |
author |
Deza, Roberto Raul |
author_facet |
Deza, Roberto Raul Deza, Juan Ignacio Martinez, Nataniel Mejías, Jorge F. Wio, Horacio S. |
author_role |
author |
author2 |
Deza, Juan Ignacio Martinez, Nataniel Mejías, Jorge F. Wio, Horacio S. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BISTABILITY ENERGY LANDSCAPE FIRING RATE DYNAMICS NEURAL NETWORKS NONEQUILIBRIUM POTENTIAL |
topic |
BISTABILITY ENERGY LANDSCAPE FIRING RATE DYNAMICS NEURAL NETWORKS NONEQUILIBRIUM POTENTIAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Energy landscapes are a highly useful aid for the understanding of dynamical systems, and a particularly valuable tool for their analysis. For a broad class of rate neural-network models of relevance in neuroscience, we derive a global Lyapunov function which provides an energy landscape without any symmetry constraint. This newly obtained "nonequilibrium potential" (NEP)-the first one obtained for a model of neural circuits-predicts with high accuracy the outcomes of the dynamics in the globally stable cases studied here. Common features of the models in this class are bistability-with implications for working memory and slow neural oscillations-and population bursts, associated with signal detection in neuroscience. Instead, limit cycles are not found for the conditions in which the NEP is defined. Their nonexistence can be proven by resorting to the Bendixson-Dulac theorem, at least when the NEP remains positive and in the (also generic) singular limit of these models. This NEP constitutes a powerful tool to understand average neural network dynamics from a more formal standpoint, and will also be of help in the description of large heterogeneous neural networks. Fil: Deza, Roberto Raul. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Deza, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Atlantida Argentina; Argentina Fil: Martinez, Nataniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina Fil: Mejías, Jorge F.. Swammerdam Institute For Life Sciences; Países Bajos Fil: Wio, Horacio S.. Universitat de Les Illes Balears; España |
description |
Energy landscapes are a highly useful aid for the understanding of dynamical systems, and a particularly valuable tool for their analysis. For a broad class of rate neural-network models of relevance in neuroscience, we derive a global Lyapunov function which provides an energy landscape without any symmetry constraint. This newly obtained "nonequilibrium potential" (NEP)-the first one obtained for a model of neural circuits-predicts with high accuracy the outcomes of the dynamics in the globally stable cases studied here. Common features of the models in this class are bistability-with implications for working memory and slow neural oscillations-and population bursts, associated with signal detection in neuroscience. Instead, limit cycles are not found for the conditions in which the NEP is defined. Their nonexistence can be proven by resorting to the Bendixson-Dulac theorem, at least when the NEP remains positive and in the (also generic) singular limit of these models. This NEP constitutes a powerful tool to understand average neural network dynamics from a more formal standpoint, and will also be of help in the description of large heterogeneous neural networks. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/120231 Deza, Roberto Raul; Deza, Juan Ignacio; Martinez, Nataniel; Mejías, Jorge F.; Wio, Horacio S.; A nonequilibrium-potential approach to competition in neural populations; Frontiers Media S.A.; Frontiers in Physics; 6; JAN; 1-2019 2296-424X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/120231 |
identifier_str_mv |
Deza, Roberto Raul; Deza, Juan Ignacio; Martinez, Nataniel; Mejías, Jorge F.; Wio, Horacio S.; A nonequilibrium-potential approach to competition in neural populations; Frontiers Media S.A.; Frontiers in Physics; 6; JAN; 1-2019 2296-424X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphy.2018.00154/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fphy.2018.00154 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media S.A. |
publisher.none.fl_str_mv |
Frontiers Media S.A. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606662042091520 |
score |
13.001348 |