When classification accuracy is not enough: Explaining news credibility assessment
- Autores
- Przybyla, Piotr; Soto, Axel Juan
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions.
Fil: Przybyla, Piotr. Polish Academy of Sciences; Argentina
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
CREDIBILITY
FAKE NEWS
NATURAL LANGUAGE PROCESSING
TEXT CLASSIFICATION
VISUAL ANALYTICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137736
Ver los metadatos del registro completo
id |
CONICETDig_c69fdecae616c70495d1beb40f91726a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137736 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
When classification accuracy is not enough: Explaining news credibility assessmentPrzybyla, PiotrSoto, Axel JuanCREDIBILITYFAKE NEWSNATURAL LANGUAGE PROCESSINGTEXT CLASSIFICATIONVISUAL ANALYTICShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions.Fil: Przybyla, Piotr. Polish Academy of Sciences; ArgentinaFil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPergamon-Elsevier Science Ltd2021-09-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137736Przybyla, Piotr; Soto, Axel Juan; When classification accuracy is not enough: Explaining news credibility assessment; Pergamon-Elsevier Science Ltd; Information Processing & Management; 58; 5; 12-9-2021; 1-20; 1026530306-4573CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0306457321001412info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipm.2021.102653info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:15Zoai:ri.conicet.gov.ar:11336/137736instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:15.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
When classification accuracy is not enough: Explaining news credibility assessment |
title |
When classification accuracy is not enough: Explaining news credibility assessment |
spellingShingle |
When classification accuracy is not enough: Explaining news credibility assessment Przybyla, Piotr CREDIBILITY FAKE NEWS NATURAL LANGUAGE PROCESSING TEXT CLASSIFICATION VISUAL ANALYTICS |
title_short |
When classification accuracy is not enough: Explaining news credibility assessment |
title_full |
When classification accuracy is not enough: Explaining news credibility assessment |
title_fullStr |
When classification accuracy is not enough: Explaining news credibility assessment |
title_full_unstemmed |
When classification accuracy is not enough: Explaining news credibility assessment |
title_sort |
When classification accuracy is not enough: Explaining news credibility assessment |
dc.creator.none.fl_str_mv |
Przybyla, Piotr Soto, Axel Juan |
author |
Przybyla, Piotr |
author_facet |
Przybyla, Piotr Soto, Axel Juan |
author_role |
author |
author2 |
Soto, Axel Juan |
author2_role |
author |
dc.subject.none.fl_str_mv |
CREDIBILITY FAKE NEWS NATURAL LANGUAGE PROCESSING TEXT CLASSIFICATION VISUAL ANALYTICS |
topic |
CREDIBILITY FAKE NEWS NATURAL LANGUAGE PROCESSING TEXT CLASSIFICATION VISUAL ANALYTICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions. Fil: Przybyla, Piotr. Polish Academy of Sciences; Argentina Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina |
description |
Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137736 Przybyla, Piotr; Soto, Axel Juan; When classification accuracy is not enough: Explaining news credibility assessment; Pergamon-Elsevier Science Ltd; Information Processing & Management; 58; 5; 12-9-2021; 1-20; 102653 0306-4573 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/137736 |
identifier_str_mv |
Przybyla, Piotr; Soto, Axel Juan; When classification accuracy is not enough: Explaining news credibility assessment; Pergamon-Elsevier Science Ltd; Information Processing & Management; 58; 5; 12-9-2021; 1-20; 102653 0306-4573 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0306457321001412 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipm.2021.102653 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083001859964928 |
score |
13.22299 |