When classification accuracy is not enough: Explaining news credibility assessment

Autores
Przybyla, Piotr; Soto, Axel Juan
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions.
Fil: Przybyla, Piotr. Polish Academy of Sciences; Argentina
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Materia
CREDIBILITY
FAKE NEWS
NATURAL LANGUAGE PROCESSING
TEXT CLASSIFICATION
VISUAL ANALYTICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/137736

id CONICETDig_c69fdecae616c70495d1beb40f91726a
oai_identifier_str oai:ri.conicet.gov.ar:11336/137736
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling When classification accuracy is not enough: Explaining news credibility assessmentPrzybyla, PiotrSoto, Axel JuanCREDIBILITYFAKE NEWSNATURAL LANGUAGE PROCESSINGTEXT CLASSIFICATIONVISUAL ANALYTICShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions.Fil: Przybyla, Piotr. Polish Academy of Sciences; ArgentinaFil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaPergamon-Elsevier Science Ltd2021-09-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137736Przybyla, Piotr; Soto, Axel Juan; When classification accuracy is not enough: Explaining news credibility assessment; Pergamon-Elsevier Science Ltd; Information Processing & Management; 58; 5; 12-9-2021; 1-20; 1026530306-4573CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0306457321001412info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipm.2021.102653info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:15Zoai:ri.conicet.gov.ar:11336/137736instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:15.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv When classification accuracy is not enough: Explaining news credibility assessment
title When classification accuracy is not enough: Explaining news credibility assessment
spellingShingle When classification accuracy is not enough: Explaining news credibility assessment
Przybyla, Piotr
CREDIBILITY
FAKE NEWS
NATURAL LANGUAGE PROCESSING
TEXT CLASSIFICATION
VISUAL ANALYTICS
title_short When classification accuracy is not enough: Explaining news credibility assessment
title_full When classification accuracy is not enough: Explaining news credibility assessment
title_fullStr When classification accuracy is not enough: Explaining news credibility assessment
title_full_unstemmed When classification accuracy is not enough: Explaining news credibility assessment
title_sort When classification accuracy is not enough: Explaining news credibility assessment
dc.creator.none.fl_str_mv Przybyla, Piotr
Soto, Axel Juan
author Przybyla, Piotr
author_facet Przybyla, Piotr
Soto, Axel Juan
author_role author
author2 Soto, Axel Juan
author2_role author
dc.subject.none.fl_str_mv CREDIBILITY
FAKE NEWS
NATURAL LANGUAGE PROCESSING
TEXT CLASSIFICATION
VISUAL ANALYTICS
topic CREDIBILITY
FAKE NEWS
NATURAL LANGUAGE PROCESSING
TEXT CLASSIFICATION
VISUAL ANALYTICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions.
Fil: Przybyla, Piotr. Polish Academy of Sciences; Argentina
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
description Dubious credibility of online news has become a major problem with negative consequences for both readers and the whole society. Despite several efforts in the development of automatic methods for measuring credibility in news stories, there has been little previous work focusing on providing explanations that go beyond a black-box decision or score. In this work, we use two machine learning approaches for computing a credibility score for any given news story: one is a linear method trained on stylometric features and the other one is a recurrent neural network. Our goal is to study whether we can explain the rationale behind these automatic methods and improve a reader's confidence in their credibility assessment. Therefore, we first adapted the classifiers to the constraints of a browser extension so that the text can be analysed while browsing online news. We also propose a set of interactive visualisations to explain to the user the rationale behind the automatic credibility assessment. We evaluated our adapted methods by means of standard machine learning performance metrics and through two user studies. The adapted neural classifier showed better performance on the test data than the stylometric classifier, despite the latter appearing to be easier to interpret by the participants. Also, users were significantly more accurate in their assessment after they interacted with the tool as well as more confident with their decisions.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/137736
Przybyla, Piotr; Soto, Axel Juan; When classification accuracy is not enough: Explaining news credibility assessment; Pergamon-Elsevier Science Ltd; Information Processing & Management; 58; 5; 12-9-2021; 1-20; 102653
0306-4573
CONICET Digital
CONICET
url http://hdl.handle.net/11336/137736
identifier_str_mv Przybyla, Piotr; Soto, Axel Juan; When classification accuracy is not enough: Explaining news credibility assessment; Pergamon-Elsevier Science Ltd; Information Processing & Management; 58; 5; 12-9-2021; 1-20; 102653
0306-4573
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0306457321001412
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipm.2021.102653
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083001859964928
score 13.22299