Surface superconductivity in the topological Weyl semimetal t-PtBi2

Autores
Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; Puig, Joaquin Roberto; Elshalem, Bat-Chen; Kalisky, Beena; Shipunov, Grigory; Baumann, Danny; Aswartham, Saicharan; Büchner, Bernd; Hess, Christian
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.
Fil: Schimmel, Sebastian. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Fasano, Yanina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Hoffmann, Sven. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Besproswanny, Julia. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Corredor Bohorquez, Laura Teresa. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Puig, Joaquin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Elshalem, Bat-Chen. Bar-Ilan University; Israel
Fil: Kalisky, Beena. Bar-Ilan University; Israel
Fil: Shipunov, Grigory. University of Amsterdam; Países Bajos. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Baumann, Danny. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Aswartham, Saicharan. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Büchner, Bernd. Leibniz-Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; Alemania
Fil: Hess, Christian. Bergische Univertsität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Materia
Superconductivity
Topological superconductivity
Weyl semimetal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266881

id CONICETDig_c67c34bf9063dc6dc879524e60bd3c6f
oai_identifier_str oai:ri.conicet.gov.ar:11336/266881
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Surface superconductivity in the topological Weyl semimetal t-PtBi2Schimmel, SebastianFasano, YaninaHoffmann, SvenBesproswanny, JuliaCorredor Bohorquez, Laura TeresaPuig, Joaquin RobertoElshalem, Bat-ChenKalisky, BeenaShipunov, GrigoryBaumann, DannyAswartham, SaicharanBüchner, BerndHess, ChristianSuperconductivityTopological superconductivityWeyl semimetalhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.Fil: Schimmel, Sebastian. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Fasano, Yanina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Hoffmann, Sven. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Besproswanny, Julia. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Corredor Bohorquez, Laura Teresa. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Puig, Joaquin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Elshalem, Bat-Chen. Bar-Ilan University; IsraelFil: Kalisky, Beena. Bar-Ilan University; IsraelFil: Shipunov, Grigory. University of Amsterdam; Países Bajos. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Baumann, Danny. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Aswartham, Saicharan. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Büchner, Bernd. Leibniz-Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; AlemaniaFil: Hess, Christian. Bergische Univertsität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaNature2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266881Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; et al.; Surface superconductivity in the topological Weyl semimetal t-PtBi2; Nature; Nature Communications; 15; 1; 11-2024; 1-62041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-54389-6info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-54389-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:35Zoai:ri.conicet.gov.ar:11336/266881instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:35.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Surface superconductivity in the topological Weyl semimetal t-PtBi2
title Surface superconductivity in the topological Weyl semimetal t-PtBi2
spellingShingle Surface superconductivity in the topological Weyl semimetal t-PtBi2
Schimmel, Sebastian
Superconductivity
Topological superconductivity
Weyl semimetal
title_short Surface superconductivity in the topological Weyl semimetal t-PtBi2
title_full Surface superconductivity in the topological Weyl semimetal t-PtBi2
title_fullStr Surface superconductivity in the topological Weyl semimetal t-PtBi2
title_full_unstemmed Surface superconductivity in the topological Weyl semimetal t-PtBi2
title_sort Surface superconductivity in the topological Weyl semimetal t-PtBi2
dc.creator.none.fl_str_mv Schimmel, Sebastian
Fasano, Yanina
Hoffmann, Sven
Besproswanny, Julia
Corredor Bohorquez, Laura Teresa
Puig, Joaquin Roberto
Elshalem, Bat-Chen
Kalisky, Beena
Shipunov, Grigory
Baumann, Danny
Aswartham, Saicharan
Büchner, Bernd
Hess, Christian
author Schimmel, Sebastian
author_facet Schimmel, Sebastian
Fasano, Yanina
Hoffmann, Sven
Besproswanny, Julia
Corredor Bohorquez, Laura Teresa
Puig, Joaquin Roberto
Elshalem, Bat-Chen
Kalisky, Beena
Shipunov, Grigory
Baumann, Danny
Aswartham, Saicharan
Büchner, Bernd
Hess, Christian
author_role author
author2 Fasano, Yanina
Hoffmann, Sven
Besproswanny, Julia
Corredor Bohorquez, Laura Teresa
Puig, Joaquin Roberto
Elshalem, Bat-Chen
Kalisky, Beena
Shipunov, Grigory
Baumann, Danny
Aswartham, Saicharan
Büchner, Bernd
Hess, Christian
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Superconductivity
Topological superconductivity
Weyl semimetal
topic Superconductivity
Topological superconductivity
Weyl semimetal
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.
Fil: Schimmel, Sebastian. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Fasano, Yanina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Hoffmann, Sven. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Besproswanny, Julia. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Corredor Bohorquez, Laura Teresa. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Puig, Joaquin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Elshalem, Bat-Chen. Bar-Ilan University; Israel
Fil: Kalisky, Beena. Bar-Ilan University; Israel
Fil: Shipunov, Grigory. University of Amsterdam; Países Bajos. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Baumann, Danny. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Aswartham, Saicharan. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Büchner, Bernd. Leibniz-Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; Alemania
Fil: Hess, Christian. Bergische Univertsität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
description Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266881
Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; et al.; Surface superconductivity in the topological Weyl semimetal t-PtBi2; Nature; Nature Communications; 15; 1; 11-2024; 1-6
2041-1723
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266881
identifier_str_mv Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; et al.; Surface superconductivity in the topological Weyl semimetal t-PtBi2; Nature; Nature Communications; 15; 1; 11-2024; 1-6
2041-1723
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-54389-6
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-54389-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613032362115072
score 13.070432