Surface superconductivity in the topological Weyl semimetal t-PtBi2
- Autores
- Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; Puig, Joaquin Roberto; Elshalem, Bat-Chen; Kalisky, Beena; Shipunov, Grigory; Baumann, Danny; Aswartham, Saicharan; Büchner, Bernd; Hess, Christian
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.
Fil: Schimmel, Sebastian. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Fasano, Yanina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Hoffmann, Sven. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Besproswanny, Julia. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Corredor Bohorquez, Laura Teresa. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Puig, Joaquin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Elshalem, Bat-Chen. Bar-Ilan University; Israel
Fil: Kalisky, Beena. Bar-Ilan University; Israel
Fil: Shipunov, Grigory. University of Amsterdam; Países Bajos. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Baumann, Danny. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Aswartham, Saicharan. Leibniz-Institute for Solid State and Materials Research; Alemania
Fil: Büchner, Bernd. Leibniz-Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; Alemania
Fil: Hess, Christian. Bergische Univertsität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania - Materia
-
Superconductivity
Topological superconductivity
Weyl semimetal - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266881
Ver los metadatos del registro completo
id |
CONICETDig_c67c34bf9063dc6dc879524e60bd3c6f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266881 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Surface superconductivity in the topological Weyl semimetal t-PtBi2Schimmel, SebastianFasano, YaninaHoffmann, SvenBesproswanny, JuliaCorredor Bohorquez, Laura TeresaPuig, Joaquin RobertoElshalem, Bat-ChenKalisky, BeenaShipunov, GrigoryBaumann, DannyAswartham, SaicharanBüchner, BerndHess, ChristianSuperconductivityTopological superconductivityWeyl semimetalhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.Fil: Schimmel, Sebastian. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Fasano, Yanina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Hoffmann, Sven. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Besproswanny, Julia. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Corredor Bohorquez, Laura Teresa. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Puig, Joaquin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Elshalem, Bat-Chen. Bar-Ilan University; IsraelFil: Kalisky, Beena. Bar-Ilan University; IsraelFil: Shipunov, Grigory. University of Amsterdam; Países Bajos. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Baumann, Danny. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Aswartham, Saicharan. Leibniz-Institute for Solid State and Materials Research; AlemaniaFil: Büchner, Bernd. Leibniz-Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; AlemaniaFil: Hess, Christian. Bergische Univertsität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; AlemaniaNature2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266881Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; et al.; Surface superconductivity in the topological Weyl semimetal t-PtBi2; Nature; Nature Communications; 15; 1; 11-2024; 1-62041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-54389-6info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-54389-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:35Zoai:ri.conicet.gov.ar:11336/266881instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:35.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 |
title |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 |
spellingShingle |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 Schimmel, Sebastian Superconductivity Topological superconductivity Weyl semimetal |
title_short |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 |
title_full |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 |
title_fullStr |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 |
title_full_unstemmed |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 |
title_sort |
Surface superconductivity in the topological Weyl semimetal t-PtBi2 |
dc.creator.none.fl_str_mv |
Schimmel, Sebastian Fasano, Yanina Hoffmann, Sven Besproswanny, Julia Corredor Bohorquez, Laura Teresa Puig, Joaquin Roberto Elshalem, Bat-Chen Kalisky, Beena Shipunov, Grigory Baumann, Danny Aswartham, Saicharan Büchner, Bernd Hess, Christian |
author |
Schimmel, Sebastian |
author_facet |
Schimmel, Sebastian Fasano, Yanina Hoffmann, Sven Besproswanny, Julia Corredor Bohorquez, Laura Teresa Puig, Joaquin Roberto Elshalem, Bat-Chen Kalisky, Beena Shipunov, Grigory Baumann, Danny Aswartham, Saicharan Büchner, Bernd Hess, Christian |
author_role |
author |
author2 |
Fasano, Yanina Hoffmann, Sven Besproswanny, Julia Corredor Bohorquez, Laura Teresa Puig, Joaquin Roberto Elshalem, Bat-Chen Kalisky, Beena Shipunov, Grigory Baumann, Danny Aswartham, Saicharan Büchner, Bernd Hess, Christian |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Superconductivity Topological superconductivity Weyl semimetal |
topic |
Superconductivity Topological superconductivity Weyl semimetal |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T. Fil: Schimmel, Sebastian. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Fasano, Yanina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Hoffmann, Sven. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Besproswanny, Julia. Bergische Universität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Corredor Bohorquez, Laura Teresa. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Puig, Joaquin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Elshalem, Bat-Chen. Bar-Ilan University; Israel Fil: Kalisky, Beena. Bar-Ilan University; Israel Fil: Shipunov, Grigory. University of Amsterdam; Países Bajos. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Baumann, Danny. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Aswartham, Saicharan. Leibniz-Institute for Solid State and Materials Research; Alemania Fil: Büchner, Bernd. Leibniz-Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; Alemania Fil: Hess, Christian. Bergische Univertsität Wuppertal; Alemania. Leibniz-Institute for Solid State and Materials Research; Alemania |
description |
Topological superconductivity is a promising concept for generating faulttolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal— trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266881 Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; et al.; Surface superconductivity in the topological Weyl semimetal t-PtBi2; Nature; Nature Communications; 15; 1; 11-2024; 1-6 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/266881 |
identifier_str_mv |
Schimmel, Sebastian; Fasano, Yanina; Hoffmann, Sven; Besproswanny, Julia; Corredor Bohorquez, Laura Teresa; et al.; Surface superconductivity in the topological Weyl semimetal t-PtBi2; Nature; Nature Communications; 15; 1; 11-2024; 1-6 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-54389-6 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-54389-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613032362115072 |
score |
13.070432 |