A finite strain contact model for mixed lubricated surfaces in forming processes
- Autores
- Luege, Mariela; Orlando, Antonio; Sienz, Johann
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product.
Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina
Fil: Sienz, Johann. Swansea University; Reino Unido - Materia
-
Constitutive Modelling
Large Deformations
Contact Interface
Stribeck Curve - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7159
Ver los metadatos del registro completo
| id |
CONICETDig_c675123f1e073af18b168e26f7c79b2b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7159 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A finite strain contact model for mixed lubricated surfaces in forming processesLuege, MarielaOrlando, AntonioSienz, JohannConstitutive ModellingLarge DeformationsContact InterfaceStribeck Curvehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product.Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; ArgentinaFil: Sienz, Johann. Swansea University; Reino UnidoElsevier2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7159Luege, Mariela; Orlando, Antonio; Sienz, Johann; A finite strain contact model for mixed lubricated surfaces in forming processes; Elsevier; Applied Mathematical Modelling; 37; 24; 6-2013; 9985-100060307-904Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.06.003info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13003879info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:24:01Zoai:ri.conicet.gov.ar:11336/7159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:24:02.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A finite strain contact model for mixed lubricated surfaces in forming processes |
| title |
A finite strain contact model for mixed lubricated surfaces in forming processes |
| spellingShingle |
A finite strain contact model for mixed lubricated surfaces in forming processes Luege, Mariela Constitutive Modelling Large Deformations Contact Interface Stribeck Curve |
| title_short |
A finite strain contact model for mixed lubricated surfaces in forming processes |
| title_full |
A finite strain contact model for mixed lubricated surfaces in forming processes |
| title_fullStr |
A finite strain contact model for mixed lubricated surfaces in forming processes |
| title_full_unstemmed |
A finite strain contact model for mixed lubricated surfaces in forming processes |
| title_sort |
A finite strain contact model for mixed lubricated surfaces in forming processes |
| dc.creator.none.fl_str_mv |
Luege, Mariela Orlando, Antonio Sienz, Johann |
| author |
Luege, Mariela |
| author_facet |
Luege, Mariela Orlando, Antonio Sienz, Johann |
| author_role |
author |
| author2 |
Orlando, Antonio Sienz, Johann |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Constitutive Modelling Large Deformations Contact Interface Stribeck Curve |
| topic |
Constitutive Modelling Large Deformations Contact Interface Stribeck Curve |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product. Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina Fil: Sienz, Johann. Swansea University; Reino Unido |
| description |
For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7159 Luege, Mariela; Orlando, Antonio; Sienz, Johann; A finite strain contact model for mixed lubricated surfaces in forming processes; Elsevier; Applied Mathematical Modelling; 37; 24; 6-2013; 9985-10006 0307-904X |
| url |
http://hdl.handle.net/11336/7159 |
| identifier_str_mv |
Luege, Mariela; Orlando, Antonio; Sienz, Johann; A finite strain contact model for mixed lubricated surfaces in forming processes; Elsevier; Applied Mathematical Modelling; 37; 24; 6-2013; 9985-10006 0307-904X |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.06.003 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13003879 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781774352351232 |
| score |
12.982451 |