A finite strain contact model for mixed lubricated surfaces in forming processes

Autores
Luege, Mariela; Orlando, Antonio; Sienz, Johann
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product.
Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina
Fil: Sienz, Johann. Swansea University; Reino Unido
Materia
Constitutive Modelling
Large Deformations
Contact Interface
Stribeck Curve
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7159

id CONICETDig_c675123f1e073af18b168e26f7c79b2b
oai_identifier_str oai:ri.conicet.gov.ar:11336/7159
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A finite strain contact model for mixed lubricated surfaces in forming processesLuege, MarielaOrlando, AntonioSienz, JohannConstitutive ModellingLarge DeformationsContact InterfaceStribeck Curvehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product.Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; ArgentinaFil: Sienz, Johann. Swansea University; Reino UnidoElsevier2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7159Luege, Mariela; Orlando, Antonio; Sienz, Johann; A finite strain contact model for mixed lubricated surfaces in forming processes; Elsevier; Applied Mathematical Modelling; 37; 24; 6-2013; 9985-100060307-904Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.06.003info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13003879info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:24:01Zoai:ri.conicet.gov.ar:11336/7159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:24:02.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A finite strain contact model for mixed lubricated surfaces in forming processes
title A finite strain contact model for mixed lubricated surfaces in forming processes
spellingShingle A finite strain contact model for mixed lubricated surfaces in forming processes
Luege, Mariela
Constitutive Modelling
Large Deformations
Contact Interface
Stribeck Curve
title_short A finite strain contact model for mixed lubricated surfaces in forming processes
title_full A finite strain contact model for mixed lubricated surfaces in forming processes
title_fullStr A finite strain contact model for mixed lubricated surfaces in forming processes
title_full_unstemmed A finite strain contact model for mixed lubricated surfaces in forming processes
title_sort A finite strain contact model for mixed lubricated surfaces in forming processes
dc.creator.none.fl_str_mv Luege, Mariela
Orlando, Antonio
Sienz, Johann
author Luege, Mariela
author_facet Luege, Mariela
Orlando, Antonio
Sienz, Johann
author_role author
author2 Orlando, Antonio
Sienz, Johann
author2_role author
author
dc.subject.none.fl_str_mv Constitutive Modelling
Large Deformations
Contact Interface
Stribeck Curve
topic Constitutive Modelling
Large Deformations
Contact Interface
Stribeck Curve
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product.
Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras "Ing. Arturo M. Guzman"; Argentina
Fil: Sienz, Johann. Swansea University; Reino Unido
description For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece. Objective of this paper is the development of a constitutive model for the contact interface that is able to capture the different lubrication regimes. The load bearing capacity of the contact interface is assumed to be the resultant of two mechanisms: dry friction arising from the solid contact asperities, and hydrodynamic fluid film lubrication. The activation of one, the other or both mechanisms is controlled by a parameter α that, in the proposed model, depends on the current value of the sliding velocity V, the interfacial separation D and the surface roughness σs. The functional relation defining α can be derived either from experimental fitting of some parameters, which can be introduced into a predefined analytical expression designed to reflect the variation of the different regimes, or from the application of a sequential multiscale analysis through the use of microscale models. The model is formulated with respect to a convected reference frame, so to make it amenable for large deformation simulations. The numerical integration scheme of the resulting initial constitutive value problem is presented and implemented into an explicit finite element code. The mechanisms of the interface model have been separately tested and the numerical results correlate well with the available experimental findings. Comparisons with the Coulomb friction model are also provided. The applicability of the model for forming simulations is then demonstrated by reproducing the manufacturing of a ridge on an aluminum tube for the cosmetic industry, using the hydroforming technique. Both an elastomer and the fluid have been employed as pressure medium, and their performance has been compared in terms of the stresses and deformations produced in the finished product.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7159
Luege, Mariela; Orlando, Antonio; Sienz, Johann; A finite strain contact model for mixed lubricated surfaces in forming processes; Elsevier; Applied Mathematical Modelling; 37; 24; 6-2013; 9985-10006
0307-904X
url http://hdl.handle.net/11336/7159
identifier_str_mv Luege, Mariela; Orlando, Antonio; Sienz, Johann; A finite strain contact model for mixed lubricated surfaces in forming processes; Elsevier; Applied Mathematical Modelling; 37; 24; 6-2013; 9985-10006
0307-904X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.06.003
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13003879
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781774352351232
score 12.982451