A FFT preconditioning technique for the solution of incompressible flow on GPUs

Autores
Storti, Mario Alberto; Paz, Rodrigo Rafael; Dalcin, Lisandro Daniel; Costarelli, Santiago Daniel; Idelsohn, Sergio Rodolfo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Graphic processing units have received much attention in last years. Compute-intensive algorithms operating on multidimensional arrays that have nearest neighbor dependency and/or exploit data locality can achieve massive speedups. Simulation of problems modeled by time-dependent Partial Differential Equations by using explicit time-stepping methods on structured grids is an instance of such GPU-friendly algorithms. Solvers for transient incompressible fluid flow cannot be developed in a fully explicit manner due to the incompressibility constraint. Segregated algorithms like the fractional step method require the solution of a Poisson problem for the pressure field at each time level. This stage is usually the most time-consuming one. This work discuss a solver for the pressure problem in applications using immersed boundary techniques in order to account for moving solid bodies. This solver is based on standard Conjugate Gradients iterations and depends on the availability of a fast Poisson solver on the whole domain to define a preconditioner. We provide a theoretical and numerical evidence on the advantages of our approach versus classical techniques based on fixed point iterations such as the Iterated Orthogonal Projection method.
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Costarelli, Santiago Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Institució Catalana de Recerca i Estudis Avancats; España. Universidad Politecnica de Catalunya; España
Materia
Graphics Processing Units
Incompressible Navier–Stokes
Poisson Equation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8879

id CONICETDig_c6374179e192af2fdf69da4b0d0e90b8
oai_identifier_str oai:ri.conicet.gov.ar:11336/8879
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A FFT preconditioning technique for the solution of incompressible flow on GPUsStorti, Mario AlbertoPaz, Rodrigo RafaelDalcin, Lisandro DanielCostarelli, Santiago DanielIdelsohn, Sergio RodolfoGraphics Processing UnitsIncompressible Navier–StokesPoisson Equationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Graphic processing units have received much attention in last years. Compute-intensive algorithms operating on multidimensional arrays that have nearest neighbor dependency and/or exploit data locality can achieve massive speedups. Simulation of problems modeled by time-dependent Partial Differential Equations by using explicit time-stepping methods on structured grids is an instance of such GPU-friendly algorithms. Solvers for transient incompressible fluid flow cannot be developed in a fully explicit manner due to the incompressibility constraint. Segregated algorithms like the fractional step method require the solution of a Poisson problem for the pressure field at each time level. This stage is usually the most time-consuming one. This work discuss a solver for the pressure problem in applications using immersed boundary techniques in order to account for moving solid bodies. This solver is based on standard Conjugate Gradients iterations and depends on the availability of a fast Poisson solver on the whole domain to define a preconditioner. We provide a theoretical and numerical evidence on the advantages of our approach versus classical techniques based on fixed point iterations such as the Iterated Orthogonal Projection method.Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; ArgentinaFil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; ArgentinaFil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; ArgentinaFil: Costarelli, Santiago Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Institució Catalana de Recerca i Estudis Avancats; España. Universidad Politecnica de Catalunya; EspañaPergamon-elsevier Science Ltd2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8879Storti, Mario Alberto; Paz, Rodrigo Rafael; Dalcin, Lisandro Daniel; Costarelli, Santiago Daniel; Idelsohn, Sergio Rodolfo; A FFT preconditioning technique for the solution of incompressible flow on GPUs; Pergamon-elsevier Science Ltd; Computers & Fluids; 74; 3-2013; 44-570045-7930enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2012.12.019info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S004579301300008Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:26Zoai:ri.conicet.gov.ar:11336/8879instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:26.931CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A FFT preconditioning technique for the solution of incompressible flow on GPUs
title A FFT preconditioning technique for the solution of incompressible flow on GPUs
spellingShingle A FFT preconditioning technique for the solution of incompressible flow on GPUs
Storti, Mario Alberto
Graphics Processing Units
Incompressible Navier–Stokes
Poisson Equation
title_short A FFT preconditioning technique for the solution of incompressible flow on GPUs
title_full A FFT preconditioning technique for the solution of incompressible flow on GPUs
title_fullStr A FFT preconditioning technique for the solution of incompressible flow on GPUs
title_full_unstemmed A FFT preconditioning technique for the solution of incompressible flow on GPUs
title_sort A FFT preconditioning technique for the solution of incompressible flow on GPUs
dc.creator.none.fl_str_mv Storti, Mario Alberto
Paz, Rodrigo Rafael
Dalcin, Lisandro Daniel
Costarelli, Santiago Daniel
Idelsohn, Sergio Rodolfo
author Storti, Mario Alberto
author_facet Storti, Mario Alberto
Paz, Rodrigo Rafael
Dalcin, Lisandro Daniel
Costarelli, Santiago Daniel
Idelsohn, Sergio Rodolfo
author_role author
author2 Paz, Rodrigo Rafael
Dalcin, Lisandro Daniel
Costarelli, Santiago Daniel
Idelsohn, Sergio Rodolfo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Graphics Processing Units
Incompressible Navier–Stokes
Poisson Equation
topic Graphics Processing Units
Incompressible Navier–Stokes
Poisson Equation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Graphic processing units have received much attention in last years. Compute-intensive algorithms operating on multidimensional arrays that have nearest neighbor dependency and/or exploit data locality can achieve massive speedups. Simulation of problems modeled by time-dependent Partial Differential Equations by using explicit time-stepping methods on structured grids is an instance of such GPU-friendly algorithms. Solvers for transient incompressible fluid flow cannot be developed in a fully explicit manner due to the incompressibility constraint. Segregated algorithms like the fractional step method require the solution of a Poisson problem for the pressure field at each time level. This stage is usually the most time-consuming one. This work discuss a solver for the pressure problem in applications using immersed boundary techniques in order to account for moving solid bodies. This solver is based on standard Conjugate Gradients iterations and depends on the availability of a fast Poisson solver on the whole domain to define a preconditioner. We provide a theoretical and numerical evidence on the advantages of our approach versus classical techniques based on fixed point iterations such as the Iterated Orthogonal Projection method.
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Paz, Rodrigo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Dalcin, Lisandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Costarelli, Santiago Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Institució Catalana de Recerca i Estudis Avancats; España. Universidad Politecnica de Catalunya; España
description Graphic processing units have received much attention in last years. Compute-intensive algorithms operating on multidimensional arrays that have nearest neighbor dependency and/or exploit data locality can achieve massive speedups. Simulation of problems modeled by time-dependent Partial Differential Equations by using explicit time-stepping methods on structured grids is an instance of such GPU-friendly algorithms. Solvers for transient incompressible fluid flow cannot be developed in a fully explicit manner due to the incompressibility constraint. Segregated algorithms like the fractional step method require the solution of a Poisson problem for the pressure field at each time level. This stage is usually the most time-consuming one. This work discuss a solver for the pressure problem in applications using immersed boundary techniques in order to account for moving solid bodies. This solver is based on standard Conjugate Gradients iterations and depends on the availability of a fast Poisson solver on the whole domain to define a preconditioner. We provide a theoretical and numerical evidence on the advantages of our approach versus classical techniques based on fixed point iterations such as the Iterated Orthogonal Projection method.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8879
Storti, Mario Alberto; Paz, Rodrigo Rafael; Dalcin, Lisandro Daniel; Costarelli, Santiago Daniel; Idelsohn, Sergio Rodolfo; A FFT preconditioning technique for the solution of incompressible flow on GPUs; Pergamon-elsevier Science Ltd; Computers & Fluids; 74; 3-2013; 44-57
0045-7930
url http://hdl.handle.net/11336/8879
identifier_str_mv Storti, Mario Alberto; Paz, Rodrigo Rafael; Dalcin, Lisandro Daniel; Costarelli, Santiago Daniel; Idelsohn, Sergio Rodolfo; A FFT preconditioning technique for the solution of incompressible flow on GPUs; Pergamon-elsevier Science Ltd; Computers & Fluids; 74; 3-2013; 44-57
0045-7930
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2012.12.019
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S004579301300008X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613142849519616
score 13.070432