A feasibility study of a complete low-cost consumer-grade brain-computer interface system

Autores
Peterson, Victoria; Galván, Catalina María; Hernández, Hugo; Spies, Ruben Daniel
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Brain-computer interfaces (BCIs) are technologies that provide the user with an alternative way of communication. A BCI measures brain activity (e.g. EEG) and converts it into output commands. Motor imagery (MI), the mental simulation of movements, can be used as a BCI paradigm, where the movement intention of the user can be translated into a real movement, helping patients in motor recovery rehabilitation. One of the main limitations for the broad use of such devices is the high cost associated with the high-quality equipment used for capturing the biomedical signals. Different low-cost consumer-grade alternatives have emerged with the objective of bringing these systems closer to the final users. The quality of the signals obtained with such equipments has already been evaluated and found to be competitive with those obtained with well-known clinical-grade devices. However, how these consumer-grade technologies can be integrated and used for practical MI-BCIs has not yet been explored. In this work, we provide a detailed description of the advantages and disadvantages of using OpenBCI boards, low-cost sensors and open-source software for constructing an entirely consumer-grade MI-BCI system. An analysis of the quality of the signals acquired and the MI detection ability is performed. Even though communication between the computer and the OpenBCI board is not always stable and the signal quality is sometimes affected by ambient noise, we find that by means of a filter-bank based method, similar classification performances can be achieved with an MI-BCI built under low-cost consumer-grade devices as compared to when clinical-grade systems are used. By means of this work we share with the BCI community our experience on working with emerging low-cost technologies, providing evidence that an entirely low-cost MI-BCI can be built. We believe that if communication stability and artifact rejection are improved, these technologies will become a valuable alternative to clinical-grade devices.
Fil: Peterson, Victoria. Universidad Nacional de Entre Ríos; Argentina
Fil: Galván, Catalina María. Universidad Nacional del Litoral; Argentina
Fil: Hernández, Hugo. Universidad Nacional de Entre Ríos; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
BIOMEDICAL ENGINEERING
BRAIN-COMPUTER INTERFACES
CONSUMER-GRADE EEG
MOTOR IMAGERY
OPEN-SOURCE SOFTWARE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/108880

id CONICETDig_c5e6a19af7be59caf5e28e674563b889
oai_identifier_str oai:ri.conicet.gov.ar:11336/108880
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A feasibility study of a complete low-cost consumer-grade brain-computer interface systemPeterson, VictoriaGalván, Catalina MaríaHernández, HugoSpies, Ruben DanielBIOMEDICAL ENGINEERINGBRAIN-COMPUTER INTERFACESCONSUMER-GRADE EEGMOTOR IMAGERYOPEN-SOURCE SOFTWAREhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Brain-computer interfaces (BCIs) are technologies that provide the user with an alternative way of communication. A BCI measures brain activity (e.g. EEG) and converts it into output commands. Motor imagery (MI), the mental simulation of movements, can be used as a BCI paradigm, where the movement intention of the user can be translated into a real movement, helping patients in motor recovery rehabilitation. One of the main limitations for the broad use of such devices is the high cost associated with the high-quality equipment used for capturing the biomedical signals. Different low-cost consumer-grade alternatives have emerged with the objective of bringing these systems closer to the final users. The quality of the signals obtained with such equipments has already been evaluated and found to be competitive with those obtained with well-known clinical-grade devices. However, how these consumer-grade technologies can be integrated and used for practical MI-BCIs has not yet been explored. In this work, we provide a detailed description of the advantages and disadvantages of using OpenBCI boards, low-cost sensors and open-source software for constructing an entirely consumer-grade MI-BCI system. An analysis of the quality of the signals acquired and the MI detection ability is performed. Even though communication between the computer and the OpenBCI board is not always stable and the signal quality is sometimes affected by ambient noise, we find that by means of a filter-bank based method, similar classification performances can be achieved with an MI-BCI built under low-cost consumer-grade devices as compared to when clinical-grade systems are used. By means of this work we share with the BCI community our experience on working with emerging low-cost technologies, providing evidence that an entirely low-cost MI-BCI can be built. We believe that if communication stability and artifact rejection are improved, these technologies will become a valuable alternative to clinical-grade devices.Fil: Peterson, Victoria. Universidad Nacional de Entre Ríos; ArgentinaFil: Galván, Catalina María. Universidad Nacional del Litoral; ArgentinaFil: Hernández, Hugo. Universidad Nacional de Entre Ríos; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElsevier Ltd2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108880Peterson, Victoria; Galván, Catalina María; Hernández, Hugo; Spies, Ruben Daniel; A feasibility study of a complete low-cost consumer-grade brain-computer interface system; Elsevier Ltd; Heliyon; 6; 3; 3-2020; e03425-1/102405-8440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.heliyon.2020.e03425info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:28Zoai:ri.conicet.gov.ar:11336/108880instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:29.042CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A feasibility study of a complete low-cost consumer-grade brain-computer interface system
title A feasibility study of a complete low-cost consumer-grade brain-computer interface system
spellingShingle A feasibility study of a complete low-cost consumer-grade brain-computer interface system
Peterson, Victoria
BIOMEDICAL ENGINEERING
BRAIN-COMPUTER INTERFACES
CONSUMER-GRADE EEG
MOTOR IMAGERY
OPEN-SOURCE SOFTWARE
title_short A feasibility study of a complete low-cost consumer-grade brain-computer interface system
title_full A feasibility study of a complete low-cost consumer-grade brain-computer interface system
title_fullStr A feasibility study of a complete low-cost consumer-grade brain-computer interface system
title_full_unstemmed A feasibility study of a complete low-cost consumer-grade brain-computer interface system
title_sort A feasibility study of a complete low-cost consumer-grade brain-computer interface system
dc.creator.none.fl_str_mv Peterson, Victoria
Galván, Catalina María
Hernández, Hugo
Spies, Ruben Daniel
author Peterson, Victoria
author_facet Peterson, Victoria
Galván, Catalina María
Hernández, Hugo
Spies, Ruben Daniel
author_role author
author2 Galván, Catalina María
Hernández, Hugo
Spies, Ruben Daniel
author2_role author
author
author
dc.subject.none.fl_str_mv BIOMEDICAL ENGINEERING
BRAIN-COMPUTER INTERFACES
CONSUMER-GRADE EEG
MOTOR IMAGERY
OPEN-SOURCE SOFTWARE
topic BIOMEDICAL ENGINEERING
BRAIN-COMPUTER INTERFACES
CONSUMER-GRADE EEG
MOTOR IMAGERY
OPEN-SOURCE SOFTWARE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.6
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Brain-computer interfaces (BCIs) are technologies that provide the user with an alternative way of communication. A BCI measures brain activity (e.g. EEG) and converts it into output commands. Motor imagery (MI), the mental simulation of movements, can be used as a BCI paradigm, where the movement intention of the user can be translated into a real movement, helping patients in motor recovery rehabilitation. One of the main limitations for the broad use of such devices is the high cost associated with the high-quality equipment used for capturing the biomedical signals. Different low-cost consumer-grade alternatives have emerged with the objective of bringing these systems closer to the final users. The quality of the signals obtained with such equipments has already been evaluated and found to be competitive with those obtained with well-known clinical-grade devices. However, how these consumer-grade technologies can be integrated and used for practical MI-BCIs has not yet been explored. In this work, we provide a detailed description of the advantages and disadvantages of using OpenBCI boards, low-cost sensors and open-source software for constructing an entirely consumer-grade MI-BCI system. An analysis of the quality of the signals acquired and the MI detection ability is performed. Even though communication between the computer and the OpenBCI board is not always stable and the signal quality is sometimes affected by ambient noise, we find that by means of a filter-bank based method, similar classification performances can be achieved with an MI-BCI built under low-cost consumer-grade devices as compared to when clinical-grade systems are used. By means of this work we share with the BCI community our experience on working with emerging low-cost technologies, providing evidence that an entirely low-cost MI-BCI can be built. We believe that if communication stability and artifact rejection are improved, these technologies will become a valuable alternative to clinical-grade devices.
Fil: Peterson, Victoria. Universidad Nacional de Entre Ríos; Argentina
Fil: Galván, Catalina María. Universidad Nacional del Litoral; Argentina
Fil: Hernández, Hugo. Universidad Nacional de Entre Ríos; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description Brain-computer interfaces (BCIs) are technologies that provide the user with an alternative way of communication. A BCI measures brain activity (e.g. EEG) and converts it into output commands. Motor imagery (MI), the mental simulation of movements, can be used as a BCI paradigm, where the movement intention of the user can be translated into a real movement, helping patients in motor recovery rehabilitation. One of the main limitations for the broad use of such devices is the high cost associated with the high-quality equipment used for capturing the biomedical signals. Different low-cost consumer-grade alternatives have emerged with the objective of bringing these systems closer to the final users. The quality of the signals obtained with such equipments has already been evaluated and found to be competitive with those obtained with well-known clinical-grade devices. However, how these consumer-grade technologies can be integrated and used for practical MI-BCIs has not yet been explored. In this work, we provide a detailed description of the advantages and disadvantages of using OpenBCI boards, low-cost sensors and open-source software for constructing an entirely consumer-grade MI-BCI system. An analysis of the quality of the signals acquired and the MI detection ability is performed. Even though communication between the computer and the OpenBCI board is not always stable and the signal quality is sometimes affected by ambient noise, we find that by means of a filter-bank based method, similar classification performances can be achieved with an MI-BCI built under low-cost consumer-grade devices as compared to when clinical-grade systems are used. By means of this work we share with the BCI community our experience on working with emerging low-cost technologies, providing evidence that an entirely low-cost MI-BCI can be built. We believe that if communication stability and artifact rejection are improved, these technologies will become a valuable alternative to clinical-grade devices.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/108880
Peterson, Victoria; Galván, Catalina María; Hernández, Hugo; Spies, Ruben Daniel; A feasibility study of a complete low-cost consumer-grade brain-computer interface system; Elsevier Ltd; Heliyon; 6; 3; 3-2020; e03425-1/10
2405-8440
CONICET Digital
CONICET
url http://hdl.handle.net/11336/108880
identifier_str_mv Peterson, Victoria; Galván, Catalina María; Hernández, Hugo; Spies, Ruben Daniel; A feasibility study of a complete low-cost consumer-grade brain-computer interface system; Elsevier Ltd; Heliyon; 6; 3; 3-2020; e03425-1/10
2405-8440
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.heliyon.2020.e03425
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980774085656576
score 12.993085