Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption

Autores
Scheverin, Verónica Natalia; Horst, María Fernanda; Lassalle, Verónica Leticia
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hydroxyapatite-biomass nanocomposite (HAp-C) was successfully synthesized through a combined ultrasonic/hydrothermal one-pot method and used as a novel adsorbent to remove fluoride ions from groundwater. The obtained HAp-C composite was entirely characterized by TG, FTIR, XRD, SEM, and TEM. The point of zero charge was determined by the drift method. It was found that the HAp partially coats the lignocellulosic matrix. XRD data suggested that biomass incorporation did not affect the crystalline structure of the HAp. FTIR analysis suggests that the bond between hydroxyapatite and biomass is given by coordinating links. The fluoride adsorption on HAp-C was tested through batch assays using model solutions. The effect of contact time, initial fluoride concentration, sorbent dose, pH, and co-existing species on the adsorption capacity was investigated. The results showed that fluoride adsorption capacity increased with contact time and initial fluoride concentration, decreasing with increasing sorbent dose. The maximum experimental adsorption capacity was 10.9 mg F− g−1 at the maximum concentration tested in this work (80 mg L−1). The pH variation (4.5–8.5) did not significantly affect the adsorption efficiency of the nanocomposite (∼90%), while the presence of co-existing species significantly decreased its removal efficiency (∼80%). The fluoride adsorption could be fitted by the Freundlich isotherm, and the adsorption kinetic data followed the pseudo-second-order model. Besides, adsorption assays were replicated using natural groundwater samples from a rural region of the southern Chaco-Pampean plain (Villarino, Buenos Aires, Argentina), registering up to 77.4% removal, reaching a fluoride concentration value (1.16 mg L−1) within the permitted limits.
Fil: Scheverin, Verónica Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Horst, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Lassalle, Verónica Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Materia
FLUORINE
GROUNDWATER REMEDIATION
HYDROTHERMAL
LIGNOCELLULOSIC COMPOSITE
REMOVAL EFFICIENCY
WATER TREATMENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/202830

id CONICETDig_c55cb0ec9171a1c0cd22b1bbee8d3c53
oai_identifier_str oai:ri.conicet.gov.ar:11336/202830
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Novel hydroxyapatite-biomass nanocomposites for fluoride adsorptionScheverin, Verónica NataliaHorst, María FernandaLassalle, Verónica LeticiaFLUORINEGROUNDWATER REMEDIATIONHYDROTHERMALLIGNOCELLULOSIC COMPOSITEREMOVAL EFFICIENCYWATER TREATMENThttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Hydroxyapatite-biomass nanocomposite (HAp-C) was successfully synthesized through a combined ultrasonic/hydrothermal one-pot method and used as a novel adsorbent to remove fluoride ions from groundwater. The obtained HAp-C composite was entirely characterized by TG, FTIR, XRD, SEM, and TEM. The point of zero charge was determined by the drift method. It was found that the HAp partially coats the lignocellulosic matrix. XRD data suggested that biomass incorporation did not affect the crystalline structure of the HAp. FTIR analysis suggests that the bond between hydroxyapatite and biomass is given by coordinating links. The fluoride adsorption on HAp-C was tested through batch assays using model solutions. The effect of contact time, initial fluoride concentration, sorbent dose, pH, and co-existing species on the adsorption capacity was investigated. The results showed that fluoride adsorption capacity increased with contact time and initial fluoride concentration, decreasing with increasing sorbent dose. The maximum experimental adsorption capacity was 10.9 mg F− g−1 at the maximum concentration tested in this work (80 mg L−1). The pH variation (4.5–8.5) did not significantly affect the adsorption efficiency of the nanocomposite (∼90%), while the presence of co-existing species significantly decreased its removal efficiency (∼80%). The fluoride adsorption could be fitted by the Freundlich isotherm, and the adsorption kinetic data followed the pseudo-second-order model. Besides, adsorption assays were replicated using natural groundwater samples from a rural region of the southern Chaco-Pampean plain (Villarino, Buenos Aires, Argentina), registering up to 77.4% removal, reaching a fluoride concentration value (1.16 mg L−1) within the permitted limits.Fil: Scheverin, Verónica Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Horst, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Lassalle, Verónica Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaElsevier2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202830Scheverin, Verónica Natalia; Horst, María Fernanda; Lassalle, Verónica Leticia; Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption; Elsevier; Results in Engineering; 16; 9-2022; 1-632590-1230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.rineng.2022.100648info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590123022003188?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:49Zoai:ri.conicet.gov.ar:11336/202830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:49.965CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
title Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
spellingShingle Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
Scheverin, Verónica Natalia
FLUORINE
GROUNDWATER REMEDIATION
HYDROTHERMAL
LIGNOCELLULOSIC COMPOSITE
REMOVAL EFFICIENCY
WATER TREATMENT
title_short Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
title_full Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
title_fullStr Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
title_full_unstemmed Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
title_sort Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption
dc.creator.none.fl_str_mv Scheverin, Verónica Natalia
Horst, María Fernanda
Lassalle, Verónica Leticia
author Scheverin, Verónica Natalia
author_facet Scheverin, Verónica Natalia
Horst, María Fernanda
Lassalle, Verónica Leticia
author_role author
author2 Horst, María Fernanda
Lassalle, Verónica Leticia
author2_role author
author
dc.subject.none.fl_str_mv FLUORINE
GROUNDWATER REMEDIATION
HYDROTHERMAL
LIGNOCELLULOSIC COMPOSITE
REMOVAL EFFICIENCY
WATER TREATMENT
topic FLUORINE
GROUNDWATER REMEDIATION
HYDROTHERMAL
LIGNOCELLULOSIC COMPOSITE
REMOVAL EFFICIENCY
WATER TREATMENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Hydroxyapatite-biomass nanocomposite (HAp-C) was successfully synthesized through a combined ultrasonic/hydrothermal one-pot method and used as a novel adsorbent to remove fluoride ions from groundwater. The obtained HAp-C composite was entirely characterized by TG, FTIR, XRD, SEM, and TEM. The point of zero charge was determined by the drift method. It was found that the HAp partially coats the lignocellulosic matrix. XRD data suggested that biomass incorporation did not affect the crystalline structure of the HAp. FTIR analysis suggests that the bond between hydroxyapatite and biomass is given by coordinating links. The fluoride adsorption on HAp-C was tested through batch assays using model solutions. The effect of contact time, initial fluoride concentration, sorbent dose, pH, and co-existing species on the adsorption capacity was investigated. The results showed that fluoride adsorption capacity increased with contact time and initial fluoride concentration, decreasing with increasing sorbent dose. The maximum experimental adsorption capacity was 10.9 mg F− g−1 at the maximum concentration tested in this work (80 mg L−1). The pH variation (4.5–8.5) did not significantly affect the adsorption efficiency of the nanocomposite (∼90%), while the presence of co-existing species significantly decreased its removal efficiency (∼80%). The fluoride adsorption could be fitted by the Freundlich isotherm, and the adsorption kinetic data followed the pseudo-second-order model. Besides, adsorption assays were replicated using natural groundwater samples from a rural region of the southern Chaco-Pampean plain (Villarino, Buenos Aires, Argentina), registering up to 77.4% removal, reaching a fluoride concentration value (1.16 mg L−1) within the permitted limits.
Fil: Scheverin, Verónica Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Horst, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Lassalle, Verónica Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
description Hydroxyapatite-biomass nanocomposite (HAp-C) was successfully synthesized through a combined ultrasonic/hydrothermal one-pot method and used as a novel adsorbent to remove fluoride ions from groundwater. The obtained HAp-C composite was entirely characterized by TG, FTIR, XRD, SEM, and TEM. The point of zero charge was determined by the drift method. It was found that the HAp partially coats the lignocellulosic matrix. XRD data suggested that biomass incorporation did not affect the crystalline structure of the HAp. FTIR analysis suggests that the bond between hydroxyapatite and biomass is given by coordinating links. The fluoride adsorption on HAp-C was tested through batch assays using model solutions. The effect of contact time, initial fluoride concentration, sorbent dose, pH, and co-existing species on the adsorption capacity was investigated. The results showed that fluoride adsorption capacity increased with contact time and initial fluoride concentration, decreasing with increasing sorbent dose. The maximum experimental adsorption capacity was 10.9 mg F− g−1 at the maximum concentration tested in this work (80 mg L−1). The pH variation (4.5–8.5) did not significantly affect the adsorption efficiency of the nanocomposite (∼90%), while the presence of co-existing species significantly decreased its removal efficiency (∼80%). The fluoride adsorption could be fitted by the Freundlich isotherm, and the adsorption kinetic data followed the pseudo-second-order model. Besides, adsorption assays were replicated using natural groundwater samples from a rural region of the southern Chaco-Pampean plain (Villarino, Buenos Aires, Argentina), registering up to 77.4% removal, reaching a fluoride concentration value (1.16 mg L−1) within the permitted limits.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/202830
Scheverin, Verónica Natalia; Horst, María Fernanda; Lassalle, Verónica Leticia; Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption; Elsevier; Results in Engineering; 16; 9-2022; 1-63
2590-1230
CONICET Digital
CONICET
url http://hdl.handle.net/11336/202830
identifier_str_mv Scheverin, Verónica Natalia; Horst, María Fernanda; Lassalle, Verónica Leticia; Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption; Elsevier; Results in Engineering; 16; 9-2022; 1-63
2590-1230
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rineng.2022.100648
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590123022003188?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613618926092288
score 13.070432