Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach

Autores
de Leo, Mariano Fernando; Ovalle, Diego García; Borgna, Juan Pablo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the context of the Ginzburg Landau formalism proposed by Barci et al. in 2016 for nematic superconductivity, and by performing a numerical treatment based on the Shooting method, we analyze the behaviour of the radial distribution of the nematic order parameter when the superconducting order parameter reaches the typical non trivial saddle point. We consider the cases of a hollow cylindrical domain, with a disk or an annular domain as its cross section, whether the order parameter is subjected to Newmann or Dirichlet boundary conditions. We conclude that depending on the corresponding situation a non trivial solution holds if certain relations between the radii are satisfied. Moreover, we observe a saturation effect on each instances that constitutes a purely geometrical consequence on the relation between the typical sizes and shapes of the samples. These conclusions can be useful for further experimental realizations and extensions to the interaction of the nematic (superconducting) order parameters with electromagnetic fields.
Fil: de Leo, Mariano Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Ovalle, Diego García. Centre National de la Recherche Scientifique; Francia
Fil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina
Materia
Nematicity and Superconductivity
Hollow cylinder domain
Numerical approach
Ginzburg-Landau equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/155371

id CONICETDig_c46b0ee091f633eebf0448f9763f360c
oai_identifier_str oai:ri.conicet.gov.ar:11336/155371
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular response for nematic superconducting media in a hollow cylinder: A numerical approachde Leo, Mariano FernandoOvalle, Diego GarcíaBorgna, Juan PabloNematicity and SuperconductivityHollow cylinder domainNumerical approachGinzburg-Landau equationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the context of the Ginzburg Landau formalism proposed by Barci et al. in 2016 for nematic superconductivity, and by performing a numerical treatment based on the Shooting method, we analyze the behaviour of the radial distribution of the nematic order parameter when the superconducting order parameter reaches the typical non trivial saddle point. We consider the cases of a hollow cylindrical domain, with a disk or an annular domain as its cross section, whether the order parameter is subjected to Newmann or Dirichlet boundary conditions. We conclude that depending on the corresponding situation a non trivial solution holds if certain relations between the radii are satisfied. Moreover, we observe a saturation effect on each instances that constitutes a purely geometrical consequence on the relation between the typical sizes and shapes of the samples. These conclusions can be useful for further experimental realizations and extensions to the interaction of the nematic (superconducting) order parameters with electromagnetic fields.Fil: de Leo, Mariano Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Ovalle, Diego García. Centre National de la Recherche Scientifique; FranciaFil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; ArgentinaEDP Sciences2021-12-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155371de Leo, Mariano Fernando; Ovalle, Diego García; Borgna, Juan Pablo; Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach; EDP Sciences; European Physical Journal: Special Topics; 29-12-2021; 1-181951-6355CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjs/s11734-021-00408-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140/epjs/s11734-021-00408-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:01:34Zoai:ri.conicet.gov.ar:11336/155371instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:01:35.144CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
title Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
spellingShingle Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
de Leo, Mariano Fernando
Nematicity and Superconductivity
Hollow cylinder domain
Numerical approach
Ginzburg-Landau equations
title_short Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
title_full Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
title_fullStr Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
title_full_unstemmed Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
title_sort Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach
dc.creator.none.fl_str_mv de Leo, Mariano Fernando
Ovalle, Diego García
Borgna, Juan Pablo
author de Leo, Mariano Fernando
author_facet de Leo, Mariano Fernando
Ovalle, Diego García
Borgna, Juan Pablo
author_role author
author2 Ovalle, Diego García
Borgna, Juan Pablo
author2_role author
author
dc.subject.none.fl_str_mv Nematicity and Superconductivity
Hollow cylinder domain
Numerical approach
Ginzburg-Landau equations
topic Nematicity and Superconductivity
Hollow cylinder domain
Numerical approach
Ginzburg-Landau equations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the context of the Ginzburg Landau formalism proposed by Barci et al. in 2016 for nematic superconductivity, and by performing a numerical treatment based on the Shooting method, we analyze the behaviour of the radial distribution of the nematic order parameter when the superconducting order parameter reaches the typical non trivial saddle point. We consider the cases of a hollow cylindrical domain, with a disk or an annular domain as its cross section, whether the order parameter is subjected to Newmann or Dirichlet boundary conditions. We conclude that depending on the corresponding situation a non trivial solution holds if certain relations between the radii are satisfied. Moreover, we observe a saturation effect on each instances that constitutes a purely geometrical consequence on the relation between the typical sizes and shapes of the samples. These conclusions can be useful for further experimental realizations and extensions to the interaction of the nematic (superconducting) order parameters with electromagnetic fields.
Fil: de Leo, Mariano Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Ovalle, Diego García. Centre National de la Recherche Scientifique; Francia
Fil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina
description In the context of the Ginzburg Landau formalism proposed by Barci et al. in 2016 for nematic superconductivity, and by performing a numerical treatment based on the Shooting method, we analyze the behaviour of the radial distribution of the nematic order parameter when the superconducting order parameter reaches the typical non trivial saddle point. We consider the cases of a hollow cylindrical domain, with a disk or an annular domain as its cross section, whether the order parameter is subjected to Newmann or Dirichlet boundary conditions. We conclude that depending on the corresponding situation a non trivial solution holds if certain relations between the radii are satisfied. Moreover, we observe a saturation effect on each instances that constitutes a purely geometrical consequence on the relation between the typical sizes and shapes of the samples. These conclusions can be useful for further experimental realizations and extensions to the interaction of the nematic (superconducting) order parameters with electromagnetic fields.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/155371
de Leo, Mariano Fernando; Ovalle, Diego García; Borgna, Juan Pablo; Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach; EDP Sciences; European Physical Journal: Special Topics; 29-12-2021; 1-18
1951-6355
CONICET Digital
CONICET
url http://hdl.handle.net/11336/155371
identifier_str_mv de Leo, Mariano Fernando; Ovalle, Diego García; Borgna, Juan Pablo; Molecular response for nematic superconducting media in a hollow cylinder: A numerical approach; EDP Sciences; European Physical Journal: Special Topics; 29-12-2021; 1-18
1951-6355
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1140/epjs/s11734-021-00408-2
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140/epjs/s11734-021-00408-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083156329889792
score 13.22299