Enhanced method for determining the optical response of highly complex biological photonic structures

Autores
Dolinko, Andrés Ezequiel; Skigin, Diana Carina
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance.
Fil: Dolinko, Andrés Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina
Fil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
Materia
Computational Electromagnetic Methods
Nanophotonics And Photonic Crystals
Subwavelength Structures
Biology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2466

id CONICETDig_c4388f96762aed4281a3e5bee503414c
oai_identifier_str oai:ri.conicet.gov.ar:11336/2466
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhanced method for determining the optical response of highly complex biological photonic structuresDolinko, Andrés EzequielSkigin, Diana CarinaComputational Electromagnetic MethodsNanophotonics And Photonic CrystalsSubwavelength StructuresBiologyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance.Fil: Dolinko, Andrés Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; ArgentinaFil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; ArgentinaOptical Society of America2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2466Dolinko, Andrés Ezequiel; Skigin, Diana Carina; Enhanced method for determining the optical response of highly complex biological photonic structures; Optical Society of America; Journal of the Optical Society of America A; 30; 9; 9-2013; 1746-17591084-7529enginfo:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAA.30.001746info:eu-repo/semantics/altIdentifier/url/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-30-9-1746info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:32Zoai:ri.conicet.gov.ar:11336/2466instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:33.145CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhanced method for determining the optical response of highly complex biological photonic structures
title Enhanced method for determining the optical response of highly complex biological photonic structures
spellingShingle Enhanced method for determining the optical response of highly complex biological photonic structures
Dolinko, Andrés Ezequiel
Computational Electromagnetic Methods
Nanophotonics And Photonic Crystals
Subwavelength Structures
Biology
title_short Enhanced method for determining the optical response of highly complex biological photonic structures
title_full Enhanced method for determining the optical response of highly complex biological photonic structures
title_fullStr Enhanced method for determining the optical response of highly complex biological photonic structures
title_full_unstemmed Enhanced method for determining the optical response of highly complex biological photonic structures
title_sort Enhanced method for determining the optical response of highly complex biological photonic structures
dc.creator.none.fl_str_mv Dolinko, Andrés Ezequiel
Skigin, Diana Carina
author Dolinko, Andrés Ezequiel
author_facet Dolinko, Andrés Ezequiel
Skigin, Diana Carina
author_role author
author2 Skigin, Diana Carina
author2_role author
dc.subject.none.fl_str_mv Computational Electromagnetic Methods
Nanophotonics And Photonic Crystals
Subwavelength Structures
Biology
topic Computational Electromagnetic Methods
Nanophotonics And Photonic Crystals
Subwavelength Structures
Biology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance.
Fil: Dolinko, Andrés Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina
Fil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
description We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2466
Dolinko, Andrés Ezequiel; Skigin, Diana Carina; Enhanced method for determining the optical response of highly complex biological photonic structures; Optical Society of America; Journal of the Optical Society of America A; 30; 9; 9-2013; 1746-1759
1084-7529
url http://hdl.handle.net/11336/2466
identifier_str_mv Dolinko, Andrés Ezequiel; Skigin, Diana Carina; Enhanced method for determining the optical response of highly complex biological photonic structures; Optical Society of America; Journal of the Optical Society of America A; 30; 9; 9-2013; 1746-1759
1084-7529
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAA.30.001746
info:eu-repo/semantics/altIdentifier/url/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-30-9-1746
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Optical Society of America
publisher.none.fl_str_mv Optical Society of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614289184260096
score 13.070432