Enhanced method for determining the optical response of highly complex biological photonic structures
- Autores
- Dolinko, Andrés Ezequiel; Skigin, Diana Carina
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance.
Fil: Dolinko, Andrés Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina
Fil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina - Materia
-
Computational Electromagnetic Methods
Nanophotonics And Photonic Crystals
Subwavelength Structures
Biology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2466
Ver los metadatos del registro completo
id |
CONICETDig_c4388f96762aed4281a3e5bee503414c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2466 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhanced method for determining the optical response of highly complex biological photonic structuresDolinko, Andrés EzequielSkigin, Diana CarinaComputational Electromagnetic MethodsNanophotonics And Photonic CrystalsSubwavelength StructuresBiologyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance.Fil: Dolinko, Andrés Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; ArgentinaFil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; ArgentinaOptical Society of America2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2466Dolinko, Andrés Ezequiel; Skigin, Diana Carina; Enhanced method for determining the optical response of highly complex biological photonic structures; Optical Society of America; Journal of the Optical Society of America A; 30; 9; 9-2013; 1746-17591084-7529enginfo:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAA.30.001746info:eu-repo/semantics/altIdentifier/url/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-30-9-1746info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:32Zoai:ri.conicet.gov.ar:11336/2466instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:33.145CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhanced method for determining the optical response of highly complex biological photonic structures |
title |
Enhanced method for determining the optical response of highly complex biological photonic structures |
spellingShingle |
Enhanced method for determining the optical response of highly complex biological photonic structures Dolinko, Andrés Ezequiel Computational Electromagnetic Methods Nanophotonics And Photonic Crystals Subwavelength Structures Biology |
title_short |
Enhanced method for determining the optical response of highly complex biological photonic structures |
title_full |
Enhanced method for determining the optical response of highly complex biological photonic structures |
title_fullStr |
Enhanced method for determining the optical response of highly complex biological photonic structures |
title_full_unstemmed |
Enhanced method for determining the optical response of highly complex biological photonic structures |
title_sort |
Enhanced method for determining the optical response of highly complex biological photonic structures |
dc.creator.none.fl_str_mv |
Dolinko, Andrés Ezequiel Skigin, Diana Carina |
author |
Dolinko, Andrés Ezequiel |
author_facet |
Dolinko, Andrés Ezequiel Skigin, Diana Carina |
author_role |
author |
author2 |
Skigin, Diana Carina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Computational Electromagnetic Methods Nanophotonics And Photonic Crystals Subwavelength Structures Biology |
topic |
Computational Electromagnetic Methods Nanophotonics And Photonic Crystals Subwavelength Structures Biology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance. Fil: Dolinko, Andrés Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina Fil: Skigin, Diana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina |
description |
We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2466 Dolinko, Andrés Ezequiel; Skigin, Diana Carina; Enhanced method for determining the optical response of highly complex biological photonic structures; Optical Society of America; Journal of the Optical Society of America A; 30; 9; 9-2013; 1746-1759 1084-7529 |
url |
http://hdl.handle.net/11336/2466 |
identifier_str_mv |
Dolinko, Andrés Ezequiel; Skigin, Diana Carina; Enhanced method for determining the optical response of highly complex biological photonic structures; Optical Society of America; Journal of the Optical Society of America A; 30; 9; 9-2013; 1746-1759 1084-7529 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAA.30.001746 info:eu-repo/semantics/altIdentifier/url/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-30-9-1746 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Optical Society of America |
publisher.none.fl_str_mv |
Optical Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614289184260096 |
score |
13.070432 |