Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images
- Autores
- Nemer, Karim Alejandra; Pucheta, Martín Alejo; Flesia, Ana Georgina
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The automated detection of coasts, riverbanks, and polynyas from synthetic aperture radar images is a difficult image processing task due to speckle noise. In this work we present a novel Fuzzy-Wavelet framework for bordeline region detection in SAR images. Our technique is based on a combination of Wavelet denoising and Fuzzy Logic which boost decision-making on noisy and poorly defined environments. Unlike most recent filtering-detection algorithms, we do not apply hypothesis tests (Wilcoxon-Mann Whitney-G0) to label the edge point candidates one by one, instead we construct a fuzzy map from wavelet denoised image and extract their borderline. We compare our algorithm performance with the popular Frost-Sobel approach and a version of Canny’s algorithm with data-dependent parameters, over a database of real polynyas and coastline simulated images under the multiplicative model. The experimental results are evaluated by comparing Pratt’s Figure of Merit index of edge map quality. In almost all test images our algorithm outperforms the standard algorithms in quality and speed.
Fil: Nemer, Karim Alejandra. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina
Fil: Pucheta, Martín Alejo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina
Fil: Flesia, Ana Georgina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
EDGE DETECTION
ENVIRONMENTAL SUSTAINABILITY ENGINEERING
FUZZY LOGIC
SAR IMAGES
WAVELETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58453
Ver los metadatos del registro completo
id |
CONICETDig_c3c743b1285b352b376167b0d345e273 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58453 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar imagesNemer, Karim AlejandraPucheta, Martín AlejoFlesia, Ana GeorginaEDGE DETECTIONENVIRONMENTAL SUSTAINABILITY ENGINEERINGFUZZY LOGICSAR IMAGESWAVELETShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The automated detection of coasts, riverbanks, and polynyas from synthetic aperture radar images is a difficult image processing task due to speckle noise. In this work we present a novel Fuzzy-Wavelet framework for bordeline region detection in SAR images. Our technique is based on a combination of Wavelet denoising and Fuzzy Logic which boost decision-making on noisy and poorly defined environments. Unlike most recent filtering-detection algorithms, we do not apply hypothesis tests (Wilcoxon-Mann Whitney-G0) to label the edge point candidates one by one, instead we construct a fuzzy map from wavelet denoised image and extract their borderline. We compare our algorithm performance with the popular Frost-Sobel approach and a version of Canny’s algorithm with data-dependent parameters, over a database of real polynyas and coastline simulated images under the multiplicative model. The experimental results are evaluated by comparing Pratt’s Figure of Merit index of edge map quality. In almost all test images our algorithm outperforms the standard algorithms in quality and speed.Fil: Nemer, Karim Alejandra. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; ArgentinaFil: Pucheta, Martín Alejo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; ArgentinaFil: Flesia, Ana Georgina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaTaylor & Francis2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58453Nemer, Karim Alejandra; Pucheta, Martín Alejo; Flesia, Ana Georgina; Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images; Taylor & Francis; Cogent Engineering; 3; 1; 7-2016; 1-212331-1916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/23311916.2016.1216725?scroll=top&needAccess=trueinfo:eu-repo/semantics/altIdentifier/doi/10.1080/23311916.2016.1216725info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:18Zoai:ri.conicet.gov.ar:11336/58453instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:18.338CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images |
title |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images |
spellingShingle |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images Nemer, Karim Alejandra EDGE DETECTION ENVIRONMENTAL SUSTAINABILITY ENGINEERING FUZZY LOGIC SAR IMAGES WAVELETS |
title_short |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images |
title_full |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images |
title_fullStr |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images |
title_full_unstemmed |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images |
title_sort |
Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images |
dc.creator.none.fl_str_mv |
Nemer, Karim Alejandra Pucheta, Martín Alejo Flesia, Ana Georgina |
author |
Nemer, Karim Alejandra |
author_facet |
Nemer, Karim Alejandra Pucheta, Martín Alejo Flesia, Ana Georgina |
author_role |
author |
author2 |
Pucheta, Martín Alejo Flesia, Ana Georgina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
EDGE DETECTION ENVIRONMENTAL SUSTAINABILITY ENGINEERING FUZZY LOGIC SAR IMAGES WAVELETS |
topic |
EDGE DETECTION ENVIRONMENTAL SUSTAINABILITY ENGINEERING FUZZY LOGIC SAR IMAGES WAVELETS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The automated detection of coasts, riverbanks, and polynyas from synthetic aperture radar images is a difficult image processing task due to speckle noise. In this work we present a novel Fuzzy-Wavelet framework for bordeline region detection in SAR images. Our technique is based on a combination of Wavelet denoising and Fuzzy Logic which boost decision-making on noisy and poorly defined environments. Unlike most recent filtering-detection algorithms, we do not apply hypothesis tests (Wilcoxon-Mann Whitney-G0) to label the edge point candidates one by one, instead we construct a fuzzy map from wavelet denoised image and extract their borderline. We compare our algorithm performance with the popular Frost-Sobel approach and a version of Canny’s algorithm with data-dependent parameters, over a database of real polynyas and coastline simulated images under the multiplicative model. The experimental results are evaluated by comparing Pratt’s Figure of Merit index of edge map quality. In almost all test images our algorithm outperforms the standard algorithms in quality and speed. Fil: Nemer, Karim Alejandra. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina Fil: Pucheta, Martín Alejo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina Fil: Flesia, Ana Georgina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The automated detection of coasts, riverbanks, and polynyas from synthetic aperture radar images is a difficult image processing task due to speckle noise. In this work we present a novel Fuzzy-Wavelet framework for bordeline region detection in SAR images. Our technique is based on a combination of Wavelet denoising and Fuzzy Logic which boost decision-making on noisy and poorly defined environments. Unlike most recent filtering-detection algorithms, we do not apply hypothesis tests (Wilcoxon-Mann Whitney-G0) to label the edge point candidates one by one, instead we construct a fuzzy map from wavelet denoised image and extract their borderline. We compare our algorithm performance with the popular Frost-Sobel approach and a version of Canny’s algorithm with data-dependent parameters, over a database of real polynyas and coastline simulated images under the multiplicative model. The experimental results are evaluated by comparing Pratt’s Figure of Merit index of edge map quality. In almost all test images our algorithm outperforms the standard algorithms in quality and speed. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58453 Nemer, Karim Alejandra; Pucheta, Martín Alejo; Flesia, Ana Georgina; Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images; Taylor & Francis; Cogent Engineering; 3; 1; 7-2016; 1-21 2331-1916 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58453 |
identifier_str_mv |
Nemer, Karim Alejandra; Pucheta, Martín Alejo; Flesia, Ana Georgina; Unsupervised fuzzy-wavelet framework for coastal polynya detection in synthetic aperture radar images; Taylor & Francis; Cogent Engineering; 3; 1; 7-2016; 1-21 2331-1916 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/23311916.2016.1216725?scroll=top&needAccess=true info:eu-repo/semantics/altIdentifier/doi/10.1080/23311916.2016.1216725 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613275200782336 |
score |
13.070432 |