A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors
- Autores
- Acuña, Fabian Horacio; Ricci, Lila; Excoffon, Adriana Carmen; Zamponi, Mauricio Oscar
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Comparative studies on cnidocysts, involving adequate statistical treatment, are very scarce. Classical statistical tests are frequently used assuming normal frequency distributions of capsule lengths, but many distributions are non-normal in acontiarian sea anemones. A traditional choice in these situations are non-parametric tests, although they are not as powerful as parametric tests. An extension of classical methods was developed by some authors; these models, called Generalized Linear Models (GLM), can be used under certain conditions with non-normal data. In view of the properties of our data, that are positive, skewed and with constant coefficient of variation, a Generalized Linear Model with gamma distribution and inverse link function was chosen to analyse the cnidae of acontia from the species Haliplanella lineata, Tricnidactis errans and Anthothoe chilensis. Graphical analysis of residuals showed that these assumptions were reasonable. This method allowed us to avoid transformation of dataset and controversial cases in the limit of significance level. For this task, appropriate subroutines in GLIM language were written. In all cases highly significant differences were found between the specimens considered for every species and nematocyst type (b-rhabdoids, p-rhabdoids B1b and p-rhabdoids B2a).
Fil: Acuña, Fabian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Ricci, Lila. Universidad Nacional de Mar del Plata; Argentina
Fil: Excoffon, Adriana Carmen. Universidad Nacional de Mar del Plata; Argentina
Fil: Zamponi, Mauricio Oscar. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CNIDAE LENGTH
STATISTICS
GAMMA DISTRIBUTION
ACONTIARIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155578
Ver los metadatos del registro completo
id |
CONICETDig_c3bf9eda1113121d5ff5df54672b34ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155578 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma ErrorsAcuña, Fabian HoracioRicci, LilaExcoffon, Adriana CarmenZamponi, Mauricio OscarCNIDAE LENGTHSTATISTICSGAMMA DISTRIBUTIONACONTIARIAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Comparative studies on cnidocysts, involving adequate statistical treatment, are very scarce. Classical statistical tests are frequently used assuming normal frequency distributions of capsule lengths, but many distributions are non-normal in acontiarian sea anemones. A traditional choice in these situations are non-parametric tests, although they are not as powerful as parametric tests. An extension of classical methods was developed by some authors; these models, called Generalized Linear Models (GLM), can be used under certain conditions with non-normal data. In view of the properties of our data, that are positive, skewed and with constant coefficient of variation, a Generalized Linear Model with gamma distribution and inverse link function was chosen to analyse the cnidae of acontia from the species Haliplanella lineata, Tricnidactis errans and Anthothoe chilensis. Graphical analysis of residuals showed that these assumptions were reasonable. This method allowed us to avoid transformation of dataset and controversial cases in the limit of significance level. For this task, appropriate subroutines in GLIM language were written. In all cases highly significant differences were found between the specimens considered for every species and nematocyst type (b-rhabdoids, p-rhabdoids B1b and p-rhabdoids B2a).Fil: Acuña, Fabian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Ricci, Lila. Universidad Nacional de Mar del Plata; ArgentinaFil: Excoffon, Adriana Carmen. Universidad Nacional de Mar del Plata; ArgentinaFil: Zamponi, Mauricio Oscar. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Gmbh2004-11-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155578Acuña, Fabian Horacio; Ricci, Lila; Excoffon, Adriana Carmen; Zamponi, Mauricio Oscar; A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors; Elsevier Gmbh; Zoologischer Anzeiger; 243; 1-2; 8-11-2004; 47-520044-5231CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0044523104000075?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcz.2004.06.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:04Zoai:ri.conicet.gov.ar:11336/155578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:04.859CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors |
title |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors |
spellingShingle |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors Acuña, Fabian Horacio CNIDAE LENGTH STATISTICS GAMMA DISTRIBUTION ACONTIARIA |
title_short |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors |
title_full |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors |
title_fullStr |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors |
title_full_unstemmed |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors |
title_sort |
A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors |
dc.creator.none.fl_str_mv |
Acuña, Fabian Horacio Ricci, Lila Excoffon, Adriana Carmen Zamponi, Mauricio Oscar |
author |
Acuña, Fabian Horacio |
author_facet |
Acuña, Fabian Horacio Ricci, Lila Excoffon, Adriana Carmen Zamponi, Mauricio Oscar |
author_role |
author |
author2 |
Ricci, Lila Excoffon, Adriana Carmen Zamponi, Mauricio Oscar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CNIDAE LENGTH STATISTICS GAMMA DISTRIBUTION ACONTIARIA |
topic |
CNIDAE LENGTH STATISTICS GAMMA DISTRIBUTION ACONTIARIA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Comparative studies on cnidocysts, involving adequate statistical treatment, are very scarce. Classical statistical tests are frequently used assuming normal frequency distributions of capsule lengths, but many distributions are non-normal in acontiarian sea anemones. A traditional choice in these situations are non-parametric tests, although they are not as powerful as parametric tests. An extension of classical methods was developed by some authors; these models, called Generalized Linear Models (GLM), can be used under certain conditions with non-normal data. In view of the properties of our data, that are positive, skewed and with constant coefficient of variation, a Generalized Linear Model with gamma distribution and inverse link function was chosen to analyse the cnidae of acontia from the species Haliplanella lineata, Tricnidactis errans and Anthothoe chilensis. Graphical analysis of residuals showed that these assumptions were reasonable. This method allowed us to avoid transformation of dataset and controversial cases in the limit of significance level. For this task, appropriate subroutines in GLIM language were written. In all cases highly significant differences were found between the specimens considered for every species and nematocyst type (b-rhabdoids, p-rhabdoids B1b and p-rhabdoids B2a). Fil: Acuña, Fabian Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina Fil: Ricci, Lila. Universidad Nacional de Mar del Plata; Argentina Fil: Excoffon, Adriana Carmen. Universidad Nacional de Mar del Plata; Argentina Fil: Zamponi, Mauricio Oscar. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Comparative studies on cnidocysts, involving adequate statistical treatment, are very scarce. Classical statistical tests are frequently used assuming normal frequency distributions of capsule lengths, but many distributions are non-normal in acontiarian sea anemones. A traditional choice in these situations are non-parametric tests, although they are not as powerful as parametric tests. An extension of classical methods was developed by some authors; these models, called Generalized Linear Models (GLM), can be used under certain conditions with non-normal data. In view of the properties of our data, that are positive, skewed and with constant coefficient of variation, a Generalized Linear Model with gamma distribution and inverse link function was chosen to analyse the cnidae of acontia from the species Haliplanella lineata, Tricnidactis errans and Anthothoe chilensis. Graphical analysis of residuals showed that these assumptions were reasonable. This method allowed us to avoid transformation of dataset and controversial cases in the limit of significance level. For this task, appropriate subroutines in GLIM language were written. In all cases highly significant differences were found between the specimens considered for every species and nematocyst type (b-rhabdoids, p-rhabdoids B1b and p-rhabdoids B2a). |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-11-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155578 Acuña, Fabian Horacio; Ricci, Lila; Excoffon, Adriana Carmen; Zamponi, Mauricio Oscar; A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors; Elsevier Gmbh; Zoologischer Anzeiger; 243; 1-2; 8-11-2004; 47-52 0044-5231 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/155578 |
identifier_str_mv |
Acuña, Fabian Horacio; Ricci, Lila; Excoffon, Adriana Carmen; Zamponi, Mauricio Oscar; A Novel Statistical Analysis of Cnidocysts in Acontiarian Sea Anemones (Cnidaria, Actiniaria) Using Generalized Linear Models with Gamma Errors; Elsevier Gmbh; Zoologischer Anzeiger; 243; 1-2; 8-11-2004; 47-52 0044-5231 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0044523104000075?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcz.2004.06.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Gmbh |
publisher.none.fl_str_mv |
Elsevier Gmbh |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613495240261632 |
score |
13.070432 |