Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane
- Autores
- Costilla, Ignacio Oscar; Sanchez, Miguel Dario; Gigola, Carlos Eugenio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Low loaded Pd/α-Al 2 O 3 catalysts (<0.5 wt% Pd) were characterized and tested for CH 4 reforming with CO 2 at 650 °C. The catalysts were prepared by a recharging procedure, using an organometallic precursor, followed by intermediate washing and calcination steps. FTIR spectra of adsorbed CO showed that the Pd surface structure and the particle size were dependent on the number of post-impregnation washing steps. A catalyst sample with a metal dispersion of 33% showing well defined low-index planes (by FTIR) and nearly spherical particles (by TEM) was obtained using two-washing steps. In the reaction, it exhibited a high initial activity followed by a pronounced deactivation due to carbon nanofiber's formation and sintering. TEM analysis of the used catalyst revealed the presence of spherical Pd particles at the end of the fibers that were not attached to the support surface. On the other hand, a high dispersion sample (78%) with a large fraction of Pd atoms with low coordination was obtained by applying three washing steps after impregnation. The presence of small hemispherical particles and larger nearly-flat ones attached to the support were found by TEM. In this case, the catalyst initially showed a very low activity that increased slowly up to a steady value. Although sintering also occurred and the surface structure of the used catalyst resembled the one of the low dispersion catalyst, the amount of carbon formed was quite low. The observed activation under reaction conditions was associated with the slow development of a surface structure that exhibited mainly the (1 0 0) plane favoring methane dissociation. However, the initial interaction of the particles with the support suggested by TEM micrographs seems to remain unaltered despite the particle size increase. Consequently, the process of nanofiber formation and particle separation was inhibited.
Fil: Costilla, Ignacio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Sanchez, Miguel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Gigola, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Carbon Formation
Catalyst Preparation
Dry Reforming
Particle'S Morphology
Pd (Palladium) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77275
Ver los metadatos del registro completo
id |
CONICETDig_c3b4af3df650cffb7ebf8066badbd84f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77275 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methaneCostilla, Ignacio OscarSanchez, Miguel DarioGigola, Carlos EugenioCarbon FormationCatalyst PreparationDry ReformingParticle'S MorphologyPd (Palladium)https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Low loaded Pd/α-Al 2 O 3 catalysts (<0.5 wt% Pd) were characterized and tested for CH 4 reforming with CO 2 at 650 °C. The catalysts were prepared by a recharging procedure, using an organometallic precursor, followed by intermediate washing and calcination steps. FTIR spectra of adsorbed CO showed that the Pd surface structure and the particle size were dependent on the number of post-impregnation washing steps. A catalyst sample with a metal dispersion of 33% showing well defined low-index planes (by FTIR) and nearly spherical particles (by TEM) was obtained using two-washing steps. In the reaction, it exhibited a high initial activity followed by a pronounced deactivation due to carbon nanofiber's formation and sintering. TEM analysis of the used catalyst revealed the presence of spherical Pd particles at the end of the fibers that were not attached to the support surface. On the other hand, a high dispersion sample (78%) with a large fraction of Pd atoms with low coordination was obtained by applying three washing steps after impregnation. The presence of small hemispherical particles and larger nearly-flat ones attached to the support were found by TEM. In this case, the catalyst initially showed a very low activity that increased slowly up to a steady value. Although sintering also occurred and the surface structure of the used catalyst resembled the one of the low dispersion catalyst, the amount of carbon formed was quite low. The observed activation under reaction conditions was associated with the slow development of a surface structure that exhibited mainly the (1 0 0) plane favoring methane dissociation. However, the initial interaction of the particles with the support suggested by TEM micrographs seems to remain unaltered despite the particle size increase. Consequently, the process of nanofiber formation and particle separation was inhibited.Fil: Costilla, Ignacio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Sanchez, Miguel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Gigola, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier Science2014-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77275Costilla, Ignacio Oscar; Sanchez, Miguel Dario; Gigola, Carlos Eugenio; Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane; Elsevier Science; Applied Catalysis A: General; 478; 31-5-2014; 38-440926-860XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926860X14001835info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcata.2014.03.030info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:44:46Zoai:ri.conicet.gov.ar:11336/77275instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:44:47.108CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane |
title |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane |
spellingShingle |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane Costilla, Ignacio Oscar Carbon Formation Catalyst Preparation Dry Reforming Particle'S Morphology Pd (Palladium) |
title_short |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane |
title_full |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane |
title_fullStr |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane |
title_full_unstemmed |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane |
title_sort |
Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane |
dc.creator.none.fl_str_mv |
Costilla, Ignacio Oscar Sanchez, Miguel Dario Gigola, Carlos Eugenio |
author |
Costilla, Ignacio Oscar |
author_facet |
Costilla, Ignacio Oscar Sanchez, Miguel Dario Gigola, Carlos Eugenio |
author_role |
author |
author2 |
Sanchez, Miguel Dario Gigola, Carlos Eugenio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Carbon Formation Catalyst Preparation Dry Reforming Particle'S Morphology Pd (Palladium) |
topic |
Carbon Formation Catalyst Preparation Dry Reforming Particle'S Morphology Pd (Palladium) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Low loaded Pd/α-Al 2 O 3 catalysts (<0.5 wt% Pd) were characterized and tested for CH 4 reforming with CO 2 at 650 °C. The catalysts were prepared by a recharging procedure, using an organometallic precursor, followed by intermediate washing and calcination steps. FTIR spectra of adsorbed CO showed that the Pd surface structure and the particle size were dependent on the number of post-impregnation washing steps. A catalyst sample with a metal dispersion of 33% showing well defined low-index planes (by FTIR) and nearly spherical particles (by TEM) was obtained using two-washing steps. In the reaction, it exhibited a high initial activity followed by a pronounced deactivation due to carbon nanofiber's formation and sintering. TEM analysis of the used catalyst revealed the presence of spherical Pd particles at the end of the fibers that were not attached to the support surface. On the other hand, a high dispersion sample (78%) with a large fraction of Pd atoms with low coordination was obtained by applying three washing steps after impregnation. The presence of small hemispherical particles and larger nearly-flat ones attached to the support were found by TEM. In this case, the catalyst initially showed a very low activity that increased slowly up to a steady value. Although sintering also occurred and the surface structure of the used catalyst resembled the one of the low dispersion catalyst, the amount of carbon formed was quite low. The observed activation under reaction conditions was associated with the slow development of a surface structure that exhibited mainly the (1 0 0) plane favoring methane dissociation. However, the initial interaction of the particles with the support suggested by TEM micrographs seems to remain unaltered despite the particle size increase. Consequently, the process of nanofiber formation and particle separation was inhibited. Fil: Costilla, Ignacio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Sanchez, Miguel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Gigola, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
Low loaded Pd/α-Al 2 O 3 catalysts (<0.5 wt% Pd) were characterized and tested for CH 4 reforming with CO 2 at 650 °C. The catalysts were prepared by a recharging procedure, using an organometallic precursor, followed by intermediate washing and calcination steps. FTIR spectra of adsorbed CO showed that the Pd surface structure and the particle size were dependent on the number of post-impregnation washing steps. A catalyst sample with a metal dispersion of 33% showing well defined low-index planes (by FTIR) and nearly spherical particles (by TEM) was obtained using two-washing steps. In the reaction, it exhibited a high initial activity followed by a pronounced deactivation due to carbon nanofiber's formation and sintering. TEM analysis of the used catalyst revealed the presence of spherical Pd particles at the end of the fibers that were not attached to the support surface. On the other hand, a high dispersion sample (78%) with a large fraction of Pd atoms with low coordination was obtained by applying three washing steps after impregnation. The presence of small hemispherical particles and larger nearly-flat ones attached to the support were found by TEM. In this case, the catalyst initially showed a very low activity that increased slowly up to a steady value. Although sintering also occurred and the surface structure of the used catalyst resembled the one of the low dispersion catalyst, the amount of carbon formed was quite low. The observed activation under reaction conditions was associated with the slow development of a surface structure that exhibited mainly the (1 0 0) plane favoring methane dissociation. However, the initial interaction of the particles with the support suggested by TEM micrographs seems to remain unaltered despite the particle size increase. Consequently, the process of nanofiber formation and particle separation was inhibited. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77275 Costilla, Ignacio Oscar; Sanchez, Miguel Dario; Gigola, Carlos Eugenio; Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane; Elsevier Science; Applied Catalysis A: General; 478; 31-5-2014; 38-44 0926-860X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77275 |
identifier_str_mv |
Costilla, Ignacio Oscar; Sanchez, Miguel Dario; Gigola, Carlos Eugenio; Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane; Elsevier Science; Applied Catalysis A: General; 478; 31-5-2014; 38-44 0926-860X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926860X14001835 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcata.2014.03.030 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082958703722496 |
score |
13.22299 |