Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods
- Autores
- Enrico, Lucas; Díaz, Sandra Myrna; Westoby, Mark; Rice, Barbara L.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background and Aims The influence of leaf mechanical properties on local ecosystem processes, such as trophic transfer, decomposition and nutrient cycling, has resulted in a growing interest in including leaf mechanical resistance in large-scale databases of plant functional traits. ‘Specific work to shear’ and ‘force to tear’ are two properties commonly used to describe mechanical resistance (toughness or strength) of leaves. Two methodologies have been widely used to measure them across large datasets. This study aimed to assess correlations and standardization between the two methods, as measured by two widely used apparatuses, in order to inter-convert existing data in those global datasets. Methods Specific work to shear (WSS) and force to tear (FT) were measured in leaves of 72 species from south-eastern Australia. The measurements were made including and excluding midribs. Relationships between the variables were tested by Spearman correlations and ordinary least square regressions. Key Results A positive and significant correlation was found between the methods, but coefficients varied according to the inclusion or exclusion of the midrib in the measurements. Equations for prediction varied according to leaf venation pattern. A positive and significant (r = 0·90, P < 0·0001) correlation was also found between WSS values for fresh and rehydrated leaves, which is considered to be of practical relevance. Conclusions In the context of broad-scale ecological hypotheses and used within the constraints recommended here, leaf mechanical resistance data obtained with both methodologies could be pooled together into a single coarser variable, using the equations provided in this paper. However, more detailed datasets of FT cannot be safely filled in with estimations based on WSS, or vice versa. In addition, WSS values of green leaves can be predicted with good accuracy from WSS of rehydrated leaves of the same species.
Fil: Enrico, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Westoby, Mark. Macquarie University. Department of Biological Sciences; Australia
Fil: Rice, Barbara L.. Macquarie University. Department of Biological Sciences; Australia - Materia
-
Comparative Plant Ecology
Leaf Biomechanics
Leaf Toughness
Trait Databases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22595
Ver los metadatos del registro completo
id |
CONICETDig_c3288ff6389063becaaad66e5ebf70ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22595 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methodsEnrico, LucasDíaz, Sandra MyrnaWestoby, MarkRice, Barbara L.Comparative Plant EcologyLeaf BiomechanicsLeaf ToughnessTrait Databaseshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background and Aims The influence of leaf mechanical properties on local ecosystem processes, such as trophic transfer, decomposition and nutrient cycling, has resulted in a growing interest in including leaf mechanical resistance in large-scale databases of plant functional traits. ‘Specific work to shear’ and ‘force to tear’ are two properties commonly used to describe mechanical resistance (toughness or strength) of leaves. Two methodologies have been widely used to measure them across large datasets. This study aimed to assess correlations and standardization between the two methods, as measured by two widely used apparatuses, in order to inter-convert existing data in those global datasets. Methods Specific work to shear (WSS) and force to tear (FT) were measured in leaves of 72 species from south-eastern Australia. The measurements were made including and excluding midribs. Relationships between the variables were tested by Spearman correlations and ordinary least square regressions. Key Results A positive and significant correlation was found between the methods, but coefficients varied according to the inclusion or exclusion of the midrib in the measurements. Equations for prediction varied according to leaf venation pattern. A positive and significant (r = 0·90, P < 0·0001) correlation was also found between WSS values for fresh and rehydrated leaves, which is considered to be of practical relevance. Conclusions In the context of broad-scale ecological hypotheses and used within the constraints recommended here, leaf mechanical resistance data obtained with both methodologies could be pooled together into a single coarser variable, using the equations provided in this paper. However, more detailed datasets of FT cannot be safely filled in with estimations based on WSS, or vice versa. In addition, WSS values of green leaves can be predicted with good accuracy from WSS of rehydrated leaves of the same species.Fil: Enrico, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Westoby, Mark. Macquarie University. Department of Biological Sciences; AustraliaFil: Rice, Barbara L.. Macquarie University. Department of Biological Sciences; AustraliaOxford University Press2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22595Enrico, Lucas; Díaz, Sandra Myrna; Westoby, Mark; Rice, Barbara L.; Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods; Oxford University Press; Annals of Botany; 117; 1; 2-2016; 209-2140305-73641095-8290CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcv149info:eu-repo/semantics/altIdentifier/doi/10.1093/aob/mcv149info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:47Zoai:ri.conicet.gov.ar:11336/22595instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:48.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods |
title |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods |
spellingShingle |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods Enrico, Lucas Comparative Plant Ecology Leaf Biomechanics Leaf Toughness Trait Databases |
title_short |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods |
title_full |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods |
title_fullStr |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods |
title_full_unstemmed |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods |
title_sort |
Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods |
dc.creator.none.fl_str_mv |
Enrico, Lucas Díaz, Sandra Myrna Westoby, Mark Rice, Barbara L. |
author |
Enrico, Lucas |
author_facet |
Enrico, Lucas Díaz, Sandra Myrna Westoby, Mark Rice, Barbara L. |
author_role |
author |
author2 |
Díaz, Sandra Myrna Westoby, Mark Rice, Barbara L. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Comparative Plant Ecology Leaf Biomechanics Leaf Toughness Trait Databases |
topic |
Comparative Plant Ecology Leaf Biomechanics Leaf Toughness Trait Databases |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background and Aims The influence of leaf mechanical properties on local ecosystem processes, such as trophic transfer, decomposition and nutrient cycling, has resulted in a growing interest in including leaf mechanical resistance in large-scale databases of plant functional traits. ‘Specific work to shear’ and ‘force to tear’ are two properties commonly used to describe mechanical resistance (toughness or strength) of leaves. Two methodologies have been widely used to measure them across large datasets. This study aimed to assess correlations and standardization between the two methods, as measured by two widely used apparatuses, in order to inter-convert existing data in those global datasets. Methods Specific work to shear (WSS) and force to tear (FT) were measured in leaves of 72 species from south-eastern Australia. The measurements were made including and excluding midribs. Relationships between the variables were tested by Spearman correlations and ordinary least square regressions. Key Results A positive and significant correlation was found between the methods, but coefficients varied according to the inclusion or exclusion of the midrib in the measurements. Equations for prediction varied according to leaf venation pattern. A positive and significant (r = 0·90, P < 0·0001) correlation was also found between WSS values for fresh and rehydrated leaves, which is considered to be of practical relevance. Conclusions In the context of broad-scale ecological hypotheses and used within the constraints recommended here, leaf mechanical resistance data obtained with both methodologies could be pooled together into a single coarser variable, using the equations provided in this paper. However, more detailed datasets of FT cannot be safely filled in with estimations based on WSS, or vice versa. In addition, WSS values of green leaves can be predicted with good accuracy from WSS of rehydrated leaves of the same species. Fil: Enrico, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Westoby, Mark. Macquarie University. Department of Biological Sciences; Australia Fil: Rice, Barbara L.. Macquarie University. Department of Biological Sciences; Australia |
description |
Background and Aims The influence of leaf mechanical properties on local ecosystem processes, such as trophic transfer, decomposition and nutrient cycling, has resulted in a growing interest in including leaf mechanical resistance in large-scale databases of plant functional traits. ‘Specific work to shear’ and ‘force to tear’ are two properties commonly used to describe mechanical resistance (toughness or strength) of leaves. Two methodologies have been widely used to measure them across large datasets. This study aimed to assess correlations and standardization between the two methods, as measured by two widely used apparatuses, in order to inter-convert existing data in those global datasets. Methods Specific work to shear (WSS) and force to tear (FT) were measured in leaves of 72 species from south-eastern Australia. The measurements were made including and excluding midribs. Relationships between the variables were tested by Spearman correlations and ordinary least square regressions. Key Results A positive and significant correlation was found between the methods, but coefficients varied according to the inclusion or exclusion of the midrib in the measurements. Equations for prediction varied according to leaf venation pattern. A positive and significant (r = 0·90, P < 0·0001) correlation was also found between WSS values for fresh and rehydrated leaves, which is considered to be of practical relevance. Conclusions In the context of broad-scale ecological hypotheses and used within the constraints recommended here, leaf mechanical resistance data obtained with both methodologies could be pooled together into a single coarser variable, using the equations provided in this paper. However, more detailed datasets of FT cannot be safely filled in with estimations based on WSS, or vice versa. In addition, WSS values of green leaves can be predicted with good accuracy from WSS of rehydrated leaves of the same species. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22595 Enrico, Lucas; Díaz, Sandra Myrna; Westoby, Mark; Rice, Barbara L.; Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods; Oxford University Press; Annals of Botany; 117; 1; 2-2016; 209-214 0305-7364 1095-8290 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22595 |
identifier_str_mv |
Enrico, Lucas; Díaz, Sandra Myrna; Westoby, Mark; Rice, Barbara L.; Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods; Oxford University Press; Annals of Botany; 117; 1; 2-2016; 209-214 0305-7364 1095-8290 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcv149 info:eu-repo/semantics/altIdentifier/doi/10.1093/aob/mcv149 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614510492516352 |
score |
13.070432 |