Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires
- Autores
- Viqueira, María Soledad; Bajales Luna, Noelia; Urreta, Silvia Elena; Bercoff, Paula Gabriela
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe100-xCox nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4.
Fil: Viqueira, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Bajales Luna, Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Bercoff, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Nanowires
AC electrodeposition
Angular dependence
Nucleation mecanism - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51159
Ver los metadatos del registro completo
id |
CONICETDig_c31ac1bb2ccd6e36b03a4252deb022a4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51159 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowiresViqueira, María SoledadBajales Luna, NoeliaUrreta, Silvia ElenaBercoff, Paula GabrielaNanowiresAC electrodepositionAngular dependenceNucleation mecanismhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe100-xCox nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4.Fil: Viqueira, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Bajales Luna, Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Bercoff, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Institute of Physics2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51159Viqueira, María Soledad; Bajales Luna, Noelia; Urreta, Silvia Elena; Bercoff, Paula Gabriela; Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires; American Institute of Physics; Journal of Applied Physics; 117; 20; 5-2015; 2043021-20430290021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4921701info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4921701info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:54Zoai:ri.conicet.gov.ar:11336/51159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:54.836CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires |
title |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires |
spellingShingle |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires Viqueira, María Soledad Nanowires AC electrodeposition Angular dependence Nucleation mecanism |
title_short |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires |
title_full |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires |
title_fullStr |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires |
title_full_unstemmed |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires |
title_sort |
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires |
dc.creator.none.fl_str_mv |
Viqueira, María Soledad Bajales Luna, Noelia Urreta, Silvia Elena Bercoff, Paula Gabriela |
author |
Viqueira, María Soledad |
author_facet |
Viqueira, María Soledad Bajales Luna, Noelia Urreta, Silvia Elena Bercoff, Paula Gabriela |
author_role |
author |
author2 |
Bajales Luna, Noelia Urreta, Silvia Elena Bercoff, Paula Gabriela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nanowires AC electrodeposition Angular dependence Nucleation mecanism |
topic |
Nanowires AC electrodeposition Angular dependence Nucleation mecanism |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe100-xCox nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4. Fil: Viqueira, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Bajales Luna, Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Urreta, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Bercoff, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe100-xCox nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51159 Viqueira, María Soledad; Bajales Luna, Noelia; Urreta, Silvia Elena; Bercoff, Paula Gabriela; Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires; American Institute of Physics; Journal of Applied Physics; 117; 20; 5-2015; 2043021-2043029 0021-8979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51159 |
identifier_str_mv |
Viqueira, María Soledad; Bajales Luna, Noelia; Urreta, Silvia Elena; Bercoff, Paula Gabriela; Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires; American Institute of Physics; Journal of Applied Physics; 117; 20; 5-2015; 2043021-2043029 0021-8979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4921701 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4921701 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613262621016064 |
score |
13.070432 |