Dark matter response to galaxy formation

Autores
Tissera, Patricia Beatriz; White, Simon D.M.; Pedrosa, Susana Elizabeth; Scannapieco, Cecilia
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have resimulated the six galaxy-sized haloes of the Aquarius Project including metaldependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this response is affected by details of halo assembly history. In agreement with previous work, we find baryon condensation to lead to increased dark matter concentration. Dark matter density profiles differ substantially in shape from halo to halo when baryons are included, but in all cases the velocity dispersion decreases monotonically with radius. Some haloes show an approximately constant dark matter velocity anisotropy with β ≈ 0.1–0.2, while others retain the anisotropy structure of their baryon-free versions. Most of our haloes become approximately oblate in their inner regions, although a few retain the shape of their dissipationless counterparts. Pseudo-phase-space densities are described by a power law in radius of altered slope when baryons are included. The shape and concentration of the dark matter density profiles are not well reproduced by published adiabatic contraction models. The significant spread we find in the density and kinematic structure of our haloes appears related to differences in their formation histories. Such differences already affect the final structure in baryon-free simulations, but they are reinforced by the inclusion of baryons, and new features are produced. The details of galaxy formation need to be better understood before the inner dark matter structure of galaxies can be used to constrain cosmological models or the nature of dark matter.
Fil: Tissera, Patricia Beatriz. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: White, Simon D.M.. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
Fil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Scannapieco, Cecilia. Leibniz Institut Fur Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
GALAXIES:EVOLUTION
GALAXIES:FORMATION
GALAXIES:HALOES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20459

id CONICETDig_c276a23d77fbcba8aebd282f99377833
oai_identifier_str oai:ri.conicet.gov.ar:11336/20459
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dark matter response to galaxy formationTissera, Patricia BeatrizWhite, Simon D.M.Pedrosa, Susana ElizabethScannapieco, CeciliaGALAXIES:EVOLUTIONGALAXIES:FORMATIONGALAXIES:HALOEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have resimulated the six galaxy-sized haloes of the Aquarius Project including metaldependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this response is affected by details of halo assembly history. In agreement with previous work, we find baryon condensation to lead to increased dark matter concentration. Dark matter density profiles differ substantially in shape from halo to halo when baryons are included, but in all cases the velocity dispersion decreases monotonically with radius. Some haloes show an approximately constant dark matter velocity anisotropy with β ≈ 0.1–0.2, while others retain the anisotropy structure of their baryon-free versions. Most of our haloes become approximately oblate in their inner regions, although a few retain the shape of their dissipationless counterparts. Pseudo-phase-space densities are described by a power law in radius of altered slope when baryons are included. The shape and concentration of the dark matter density profiles are not well reproduced by published adiabatic contraction models. The significant spread we find in the density and kinematic structure of our haloes appears related to differences in their formation histories. Such differences already affect the final structure in baryon-free simulations, but they are reinforced by the inclusion of baryons, and new features are produced. The details of galaxy formation need to be better understood before the inner dark matter structure of galaxies can be used to constrain cosmological models or the nature of dark matter.Fil: Tissera, Patricia Beatriz. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: White, Simon D.M.. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; AlemaniaFil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Scannapieco, Cecilia. Leibniz Institut Fur Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaWiley Blackwell Publishing, Inc2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20459Tissera, Patricia Beatriz; White, Simon D.M.; Pedrosa, Susana Elizabeth; Scannapieco, Cecilia; Dark matter response to galaxy formation; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 406; 2; 8-2010; 922-9350035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://mnras.oxfordjournals.org/content/406/2/922info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16777.xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0911.2316info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:53Zoai:ri.conicet.gov.ar:11336/20459instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:54.664CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dark matter response to galaxy formation
title Dark matter response to galaxy formation
spellingShingle Dark matter response to galaxy formation
Tissera, Patricia Beatriz
GALAXIES:EVOLUTION
GALAXIES:FORMATION
GALAXIES:HALOES
title_short Dark matter response to galaxy formation
title_full Dark matter response to galaxy formation
title_fullStr Dark matter response to galaxy formation
title_full_unstemmed Dark matter response to galaxy formation
title_sort Dark matter response to galaxy formation
dc.creator.none.fl_str_mv Tissera, Patricia Beatriz
White, Simon D.M.
Pedrosa, Susana Elizabeth
Scannapieco, Cecilia
author Tissera, Patricia Beatriz
author_facet Tissera, Patricia Beatriz
White, Simon D.M.
Pedrosa, Susana Elizabeth
Scannapieco, Cecilia
author_role author
author2 White, Simon D.M.
Pedrosa, Susana Elizabeth
Scannapieco, Cecilia
author2_role author
author
author
dc.subject.none.fl_str_mv GALAXIES:EVOLUTION
GALAXIES:FORMATION
GALAXIES:HALOES
topic GALAXIES:EVOLUTION
GALAXIES:FORMATION
GALAXIES:HALOES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have resimulated the six galaxy-sized haloes of the Aquarius Project including metaldependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this response is affected by details of halo assembly history. In agreement with previous work, we find baryon condensation to lead to increased dark matter concentration. Dark matter density profiles differ substantially in shape from halo to halo when baryons are included, but in all cases the velocity dispersion decreases monotonically with radius. Some haloes show an approximately constant dark matter velocity anisotropy with β ≈ 0.1–0.2, while others retain the anisotropy structure of their baryon-free versions. Most of our haloes become approximately oblate in their inner regions, although a few retain the shape of their dissipationless counterparts. Pseudo-phase-space densities are described by a power law in radius of altered slope when baryons are included. The shape and concentration of the dark matter density profiles are not well reproduced by published adiabatic contraction models. The significant spread we find in the density and kinematic structure of our haloes appears related to differences in their formation histories. Such differences already affect the final structure in baryon-free simulations, but they are reinforced by the inclusion of baryons, and new features are produced. The details of galaxy formation need to be better understood before the inner dark matter structure of galaxies can be used to constrain cosmological models or the nature of dark matter.
Fil: Tissera, Patricia Beatriz. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: White, Simon D.M.. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
Fil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Scannapieco, Cecilia. Leibniz Institut Fur Astrophysik Potsdam; Alemania. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description We have resimulated the six galaxy-sized haloes of the Aquarius Project including metaldependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this response is affected by details of halo assembly history. In agreement with previous work, we find baryon condensation to lead to increased dark matter concentration. Dark matter density profiles differ substantially in shape from halo to halo when baryons are included, but in all cases the velocity dispersion decreases monotonically with radius. Some haloes show an approximately constant dark matter velocity anisotropy with β ≈ 0.1–0.2, while others retain the anisotropy structure of their baryon-free versions. Most of our haloes become approximately oblate in their inner regions, although a few retain the shape of their dissipationless counterparts. Pseudo-phase-space densities are described by a power law in radius of altered slope when baryons are included. The shape and concentration of the dark matter density profiles are not well reproduced by published adiabatic contraction models. The significant spread we find in the density and kinematic structure of our haloes appears related to differences in their formation histories. Such differences already affect the final structure in baryon-free simulations, but they are reinforced by the inclusion of baryons, and new features are produced. The details of galaxy formation need to be better understood before the inner dark matter structure of galaxies can be used to constrain cosmological models or the nature of dark matter.
publishDate 2010
dc.date.none.fl_str_mv 2010-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20459
Tissera, Patricia Beatriz; White, Simon D.M.; Pedrosa, Susana Elizabeth; Scannapieco, Cecilia; Dark matter response to galaxy formation; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 406; 2; 8-2010; 922-935
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20459
identifier_str_mv Tissera, Patricia Beatriz; White, Simon D.M.; Pedrosa, Susana Elizabeth; Scannapieco, Cecilia; Dark matter response to galaxy formation; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 406; 2; 8-2010; 922-935
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://mnras.oxfordjournals.org/content/406/2/922
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16777.x
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0911.2316
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269000599339008
score 13.13397