Multifractality of quantum wave functions in the presence of perturbations

Autores
Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; Martin, John
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.
Fil: Dubertrand, Remy. Universite de Liege; Bélgica. Universite de Toulose - Le Mirail; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Garcia-mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Georgeot, Bertrand. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Giraud, Olivier. Universite Paris Sud; Francia
Fil: Lemarie, Gabriel. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Martin, John. Universite de Liege; Bélgica
Materia
Localizacion
Cuantica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8244

id CONICETDig_c1e75b8b6ed557bd78f75f24d15860ca
oai_identifier_str oai:ri.conicet.gov.ar:11336/8244
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multifractality of quantum wave functions in the presence of perturbationsDubertrand, RemyGarcia-mata, IgnacioGeorgeot, BertrandGiraud, OlivierLemarie, GabrielMartin, JohnLocalizacionCuanticahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.Fil: Dubertrand, Remy. Universite de Liege; Bélgica. Universite de Toulose - Le Mirail; Francia. Centre National de la Recherche Scientifique; FranciaFil: Garcia-mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Georgeot, Bertrand. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Giraud, Olivier. Universite Paris Sud; FranciaFil: Lemarie, Gabriel. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Martin, John. Universite de Liege; BélgicaAmerican Physical Society2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8244Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; et al.; Multifractality of quantum wave functions in the presence of perturbations; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 92; 3; 9-2015; 32914-329341539-3755enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.032914info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.032914info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:05Zoai:ri.conicet.gov.ar:11336/8244instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:06.105CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multifractality of quantum wave functions in the presence of perturbations
title Multifractality of quantum wave functions in the presence of perturbations
spellingShingle Multifractality of quantum wave functions in the presence of perturbations
Dubertrand, Remy
Localizacion
Cuantica
title_short Multifractality of quantum wave functions in the presence of perturbations
title_full Multifractality of quantum wave functions in the presence of perturbations
title_fullStr Multifractality of quantum wave functions in the presence of perturbations
title_full_unstemmed Multifractality of quantum wave functions in the presence of perturbations
title_sort Multifractality of quantum wave functions in the presence of perturbations
dc.creator.none.fl_str_mv Dubertrand, Remy
Garcia-mata, Ignacio
Georgeot, Bertrand
Giraud, Olivier
Lemarie, Gabriel
Martin, John
author Dubertrand, Remy
author_facet Dubertrand, Remy
Garcia-mata, Ignacio
Georgeot, Bertrand
Giraud, Olivier
Lemarie, Gabriel
Martin, John
author_role author
author2 Garcia-mata, Ignacio
Georgeot, Bertrand
Giraud, Olivier
Lemarie, Gabriel
Martin, John
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Localizacion
Cuantica
topic Localizacion
Cuantica
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.
Fil: Dubertrand, Remy. Universite de Liege; Bélgica. Universite de Toulose - Le Mirail; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Garcia-mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Georgeot, Bertrand. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Giraud, Olivier. Universite Paris Sud; Francia
Fil: Lemarie, Gabriel. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Martin, John. Universite de Liege; Bélgica
description We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8244
Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; et al.; Multifractality of quantum wave functions in the presence of perturbations; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 92; 3; 9-2015; 32914-32934
1539-3755
url http://hdl.handle.net/11336/8244
identifier_str_mv Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; et al.; Multifractality of quantum wave functions in the presence of perturbations; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 92; 3; 9-2015; 32914-32934
1539-3755
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.032914
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.032914
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614333705748480
score 13.070432