Multifractality of quantum wave functions in the presence of perturbations
- Autores
- Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; Martin, John
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.
Fil: Dubertrand, Remy. Universite de Liege; Bélgica. Universite de Toulose - Le Mirail; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Garcia-mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Georgeot, Bertrand. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Giraud, Olivier. Universite Paris Sud; Francia
Fil: Lemarie, Gabriel. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Martin, John. Universite de Liege; Bélgica - Materia
-
Localizacion
Cuantica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8244
Ver los metadatos del registro completo
id |
CONICETDig_c1e75b8b6ed557bd78f75f24d15860ca |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8244 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multifractality of quantum wave functions in the presence of perturbationsDubertrand, RemyGarcia-mata, IgnacioGeorgeot, BertrandGiraud, OlivierLemarie, GabrielMartin, JohnLocalizacionCuanticahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.Fil: Dubertrand, Remy. Universite de Liege; Bélgica. Universite de Toulose - Le Mirail; Francia. Centre National de la Recherche Scientifique; FranciaFil: Garcia-mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Georgeot, Bertrand. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Giraud, Olivier. Universite Paris Sud; FranciaFil: Lemarie, Gabriel. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Martin, John. Universite de Liege; BélgicaAmerican Physical Society2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8244Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; et al.; Multifractality of quantum wave functions in the presence of perturbations; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 92; 3; 9-2015; 32914-329341539-3755enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.032914info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.032914info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:05Zoai:ri.conicet.gov.ar:11336/8244instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:06.105CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multifractality of quantum wave functions in the presence of perturbations |
title |
Multifractality of quantum wave functions in the presence of perturbations |
spellingShingle |
Multifractality of quantum wave functions in the presence of perturbations Dubertrand, Remy Localizacion Cuantica |
title_short |
Multifractality of quantum wave functions in the presence of perturbations |
title_full |
Multifractality of quantum wave functions in the presence of perturbations |
title_fullStr |
Multifractality of quantum wave functions in the presence of perturbations |
title_full_unstemmed |
Multifractality of quantum wave functions in the presence of perturbations |
title_sort |
Multifractality of quantum wave functions in the presence of perturbations |
dc.creator.none.fl_str_mv |
Dubertrand, Remy Garcia-mata, Ignacio Georgeot, Bertrand Giraud, Olivier Lemarie, Gabriel Martin, John |
author |
Dubertrand, Remy |
author_facet |
Dubertrand, Remy Garcia-mata, Ignacio Georgeot, Bertrand Giraud, Olivier Lemarie, Gabriel Martin, John |
author_role |
author |
author2 |
Garcia-mata, Ignacio Georgeot, Bertrand Giraud, Olivier Lemarie, Gabriel Martin, John |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Localizacion Cuantica |
topic |
Localizacion Cuantica |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems. Fil: Dubertrand, Remy. Universite de Liege; Bélgica. Universite de Toulose - Le Mirail; Francia. Centre National de la Recherche Scientifique; Francia Fil: Garcia-mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Georgeot, Bertrand. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia Fil: Giraud, Olivier. Universite Paris Sud; Francia Fil: Lemarie, Gabriel. Universitá Paul Sabatier; Francia. Centre National de la Recherche Scientifique; Francia Fil: Martin, John. Universite de Liege; Bélgica |
description |
We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8244 Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; et al.; Multifractality of quantum wave functions in the presence of perturbations; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 92; 3; 9-2015; 32914-32934 1539-3755 |
url |
http://hdl.handle.net/11336/8244 |
identifier_str_mv |
Dubertrand, Remy; Garcia-mata, Ignacio; Georgeot, Bertrand; Giraud, Olivier; Lemarie, Gabriel; et al.; Multifractality of quantum wave functions in the presence of perturbations; American Physical Society; Physical Review E: Statistical, Nonlinear And Soft Matter Physics; 92; 3; 9-2015; 32914-32934 1539-3755 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.032914 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.032914 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614333705748480 |
score |
13.070432 |