Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials

Autores
Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems.
Fil: Larrosa, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Ortiz, Jhonny E.. Universidad de Sevilla; España
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Materia
Boundary Element
Composite Materials
Fracture Mechanics
Three-Dimensional Interface Cracks
Transversely Isotropic Bimaterials
Energy Domain Integral
Boundary Element Method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/43411

id CONICETDig_c1c6d4fcefdc767613cd2557c2c3287e
oai_identifier_str oai:ri.conicet.gov.ar:11336/43411
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materialsLarrosa, Nicolás OscarOrtiz, Jhonny E.Cisilino, Adrian PabloBoundary ElementComposite MaterialsFracture MechanicsThree-Dimensional Interface CracksTransversely Isotropic BimaterialsEnergy Domain IntegralBoundary Element Methodhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems.Fil: Larrosa, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Ortiz, Jhonny E.. Universidad de Sevilla; EspañaFil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaMathematical Science Publ2011-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43411Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo; Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials; Mathematical Science Publ; Journal of Mechanics of Materials and Structures; 6; 7-8; 21-12-2011; 1103-11231559-3959CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://msp.org/jomms/2011/6-7/jomms-v6-n7-p11-s.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.2140/jomms.2011.6.1103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:42Zoai:ri.conicet.gov.ar:11336/43411instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:42.574CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
title Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
spellingShingle Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
Larrosa, Nicolás Oscar
Boundary Element
Composite Materials
Fracture Mechanics
Three-Dimensional Interface Cracks
Transversely Isotropic Bimaterials
Energy Domain Integral
Boundary Element Method
title_short Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
title_full Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
title_fullStr Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
title_full_unstemmed Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
title_sort Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
dc.creator.none.fl_str_mv Larrosa, Nicolás Oscar
Ortiz, Jhonny E.
Cisilino, Adrian Pablo
author Larrosa, Nicolás Oscar
author_facet Larrosa, Nicolás Oscar
Ortiz, Jhonny E.
Cisilino, Adrian Pablo
author_role author
author2 Ortiz, Jhonny E.
Cisilino, Adrian Pablo
author2_role author
author
dc.subject.none.fl_str_mv Boundary Element
Composite Materials
Fracture Mechanics
Three-Dimensional Interface Cracks
Transversely Isotropic Bimaterials
Energy Domain Integral
Boundary Element Method
topic Boundary Element
Composite Materials
Fracture Mechanics
Three-Dimensional Interface Cracks
Transversely Isotropic Bimaterials
Energy Domain Integral
Boundary Element Method
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems.
Fil: Larrosa, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Ortiz, Jhonny E.. Universidad de Sevilla; España
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
description Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/43411
Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo; Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials; Mathematical Science Publ; Journal of Mechanics of Materials and Structures; 6; 7-8; 21-12-2011; 1103-1123
1559-3959
CONICET Digital
CONICET
url http://hdl.handle.net/11336/43411
identifier_str_mv Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo; Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials; Mathematical Science Publ; Journal of Mechanics of Materials and Structures; 6; 7-8; 21-12-2011; 1103-1123
1559-3959
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://msp.org/jomms/2011/6-7/jomms-v6-n7-p11-s.pdf
info:eu-repo/semantics/altIdentifier/doi/10.2140/jomms.2011.6.1103
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Science Publ
publisher.none.fl_str_mv Mathematical Science Publ
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083294530109440
score 13.22299