Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials
- Autores
- Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems.
Fil: Larrosa, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Ortiz, Jhonny E.. Universidad de Sevilla; España
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
Boundary Element
Composite Materials
Fracture Mechanics
Three-Dimensional Interface Cracks
Transversely Isotropic Bimaterials
Energy Domain Integral
Boundary Element Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43411
Ver los metadatos del registro completo
id |
CONICETDig_c1c6d4fcefdc767613cd2557c2c3287e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43411 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materialsLarrosa, Nicolás OscarOrtiz, Jhonny E.Cisilino, Adrian PabloBoundary ElementComposite MaterialsFracture MechanicsThree-Dimensional Interface CracksTransversely Isotropic BimaterialsEnergy Domain IntegralBoundary Element Methodhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems.Fil: Larrosa, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Ortiz, Jhonny E.. Universidad de Sevilla; EspañaFil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaMathematical Science Publ2011-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43411Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo; Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials; Mathematical Science Publ; Journal of Mechanics of Materials and Structures; 6; 7-8; 21-12-2011; 1103-11231559-3959CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://msp.org/jomms/2011/6-7/jomms-v6-n7-p11-s.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.2140/jomms.2011.6.1103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:42Zoai:ri.conicet.gov.ar:11336/43411instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:42.574CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials |
title |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials |
spellingShingle |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials Larrosa, Nicolás Oscar Boundary Element Composite Materials Fracture Mechanics Three-Dimensional Interface Cracks Transversely Isotropic Bimaterials Energy Domain Integral Boundary Element Method |
title_short |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials |
title_full |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials |
title_fullStr |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials |
title_full_unstemmed |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials |
title_sort |
Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials |
dc.creator.none.fl_str_mv |
Larrosa, Nicolás Oscar Ortiz, Jhonny E. Cisilino, Adrian Pablo |
author |
Larrosa, Nicolás Oscar |
author_facet |
Larrosa, Nicolás Oscar Ortiz, Jhonny E. Cisilino, Adrian Pablo |
author_role |
author |
author2 |
Ortiz, Jhonny E. Cisilino, Adrian Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Boundary Element Composite Materials Fracture Mechanics Three-Dimensional Interface Cracks Transversely Isotropic Bimaterials Energy Domain Integral Boundary Element Method |
topic |
Boundary Element Composite Materials Fracture Mechanics Three-Dimensional Interface Cracks Transversely Isotropic Bimaterials Energy Domain Integral Boundary Element Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems. Fil: Larrosa, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Ortiz, Jhonny E.. Universidad de Sevilla; España Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Beyond the inherent attribute of reducing the dimensionality of the problem, the attraction of the Boundary Element Method (BEM) to deal with fracture mechanic problems is its accuracy to solve strong geometrical discontinuities. Within this context, it is presented in this paper a three-dimensional implementation of the Energy Domain Integral (EDI) for the analysis of interface cracks in transversely isotropic bimaterials. The EDI allows extending the two-dimensional J-integral to three dimensions by means of a domain representation naturally compatible with the BEM, in which the required stresses, strains and derivatives of displacements are evaluated using their appropriate boundary integral equations. To this end, the BEM implementation uses a set of recently introduced fundamental solutions for transversely isotropic materials. Several examples are solved in order to demonstrate the efficiency and accuracy of the implementation to solve straight and curved crack-front problems. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43411 Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo; Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials; Mathematical Science Publ; Journal of Mechanics of Materials and Structures; 6; 7-8; 21-12-2011; 1103-1123 1559-3959 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43411 |
identifier_str_mv |
Larrosa, Nicolás Oscar; Ortiz, Jhonny E.; Cisilino, Adrian Pablo; Three-dimensional BEM analysis to assess delamination cracks between two transversely isotropic materials; Mathematical Science Publ; Journal of Mechanics of Materials and Structures; 6; 7-8; 21-12-2011; 1103-1123 1559-3959 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://msp.org/jomms/2011/6-7/jomms-v6-n7-p11-s.pdf info:eu-repo/semantics/altIdentifier/doi/10.2140/jomms.2011.6.1103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Science Publ |
publisher.none.fl_str_mv |
Mathematical Science Publ |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083294530109440 |
score |
13.22299 |