Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction
- Autores
- Gaudiani, Adriana Angélica; Luquet, Emilio; García, Pablo; Re, Mariano; Naiouf, Ricardo Marcelo; de Giusti, Armando Eduardo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Floods have caused widespread damage throughout the world. Modelling and simulation provide solutions and tools which enable us to forecast and make necessary steps toward prevention. One problem that must be handled by physical systems simulators is the parameters uncertainty and their impact on output results, causing prediction errors. In this paper, we address input parameter uncertainty toward providing a methodology to tune a flood simulator and achieve lower error between simulated and observed results. The tuning methodology, through a parametric simulation technique, implements a first stage to find an adjusted set of critical parameters which will be used to validate the predictive capability of the simulator in order to reduce the disagreement between observed data and simulated results. We concentrate our experiments in three significant monitoring stations, located at the lower basin of the Parańa River in Argentina, and the percentage of improvement over the original simulator values ranges from 33 to 60%.
Fil: Gaudiani, Adriana Angélica. Universidad Nacional de General Sarmiento; Argentina
Fil: Luquet, Emilio. Universitat Autònoma de Barcelona; España
Fil: García, Pablo. Instituto Nacional del Agua; Argentina
Fil: Re, Mariano. Instituto Nacional del Agua; Argentina
Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina
Fil: de Giusti, Armando Eduardo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina - Materia
-
Parametric Simulation
Tuning Simulation
Flood Prediction
Flood Simulation Improvement
High Performance Computing in Flood Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32575
Ver los metadatos del registro completo
id |
CONICETDig_c0eb8ae08c053874c0b94499d5135a8e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32575 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood PredictionGaudiani, Adriana AngélicaLuquet, EmilioGarcía, PabloRe, MarianoNaiouf, Ricardo Marcelode Giusti, Armando EduardoParametric SimulationTuning SimulationFlood PredictionFlood Simulation ImprovementHigh Performance Computing in Flood Simulationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Floods have caused widespread damage throughout the world. Modelling and simulation provide solutions and tools which enable us to forecast and make necessary steps toward prevention. One problem that must be handled by physical systems simulators is the parameters uncertainty and their impact on output results, causing prediction errors. In this paper, we address input parameter uncertainty toward providing a methodology to tune a flood simulator and achieve lower error between simulated and observed results. The tuning methodology, through a parametric simulation technique, implements a first stage to find an adjusted set of critical parameters which will be used to validate the predictive capability of the simulator in order to reduce the disagreement between observed data and simulated results. We concentrate our experiments in three significant monitoring stations, located at the lower basin of the Parańa River in Argentina, and the percentage of improvement over the original simulator values ranges from 33 to 60%.Fil: Gaudiani, Adriana Angélica. Universidad Nacional de General Sarmiento; ArgentinaFil: Luquet, Emilio. Universitat Autònoma de Barcelona; EspañaFil: García, Pablo. Instituto Nacional del Agua; ArgentinaFil: Re, Mariano. Instituto Nacional del Agua; ArgentinaFil: Naiouf, Ricardo Marcelo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; ArgentinaFil: de Giusti, Armando Eduardo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; ArgentinaElsevier Science2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32575Luquet, Emilio; García, Pablo; Re, Mariano; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; Gaudiani, Adriana Angélica; et al.; Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction; Elsevier Science; Procedia Computer Science; 29; 6-2014; 299-3091877-0509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.procs.2014.05.027info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S187705091400204Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:53Zoai:ri.conicet.gov.ar:11336/32575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:54.081CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction |
title |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction |
spellingShingle |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction Gaudiani, Adriana Angélica Parametric Simulation Tuning Simulation Flood Prediction Flood Simulation Improvement High Performance Computing in Flood Simulation |
title_short |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction |
title_full |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction |
title_fullStr |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction |
title_full_unstemmed |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction |
title_sort |
Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction |
dc.creator.none.fl_str_mv |
Gaudiani, Adriana Angélica Luquet, Emilio García, Pablo Re, Mariano Naiouf, Ricardo Marcelo de Giusti, Armando Eduardo |
author |
Gaudiani, Adriana Angélica |
author_facet |
Gaudiani, Adriana Angélica Luquet, Emilio García, Pablo Re, Mariano Naiouf, Ricardo Marcelo de Giusti, Armando Eduardo |
author_role |
author |
author2 |
Luquet, Emilio García, Pablo Re, Mariano Naiouf, Ricardo Marcelo de Giusti, Armando Eduardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Parametric Simulation Tuning Simulation Flood Prediction Flood Simulation Improvement High Performance Computing in Flood Simulation |
topic |
Parametric Simulation Tuning Simulation Flood Prediction Flood Simulation Improvement High Performance Computing in Flood Simulation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Floods have caused widespread damage throughout the world. Modelling and simulation provide solutions and tools which enable us to forecast and make necessary steps toward prevention. One problem that must be handled by physical systems simulators is the parameters uncertainty and their impact on output results, causing prediction errors. In this paper, we address input parameter uncertainty toward providing a methodology to tune a flood simulator and achieve lower error between simulated and observed results. The tuning methodology, through a parametric simulation technique, implements a first stage to find an adjusted set of critical parameters which will be used to validate the predictive capability of the simulator in order to reduce the disagreement between observed data and simulated results. We concentrate our experiments in three significant monitoring stations, located at the lower basin of the Parańa River in Argentina, and the percentage of improvement over the original simulator values ranges from 33 to 60%. Fil: Gaudiani, Adriana Angélica. Universidad Nacional de General Sarmiento; Argentina Fil: Luquet, Emilio. Universitat Autònoma de Barcelona; España Fil: García, Pablo. Instituto Nacional del Agua; Argentina Fil: Re, Mariano. Instituto Nacional del Agua; Argentina Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina Fil: de Giusti, Armando Eduardo. Universidad Nacional de la Plata. Facultad de Informatica. Instituto de Investigación En Informatica Lidi; Argentina |
description |
Floods have caused widespread damage throughout the world. Modelling and simulation provide solutions and tools which enable us to forecast and make necessary steps toward prevention. One problem that must be handled by physical systems simulators is the parameters uncertainty and their impact on output results, causing prediction errors. In this paper, we address input parameter uncertainty toward providing a methodology to tune a flood simulator and achieve lower error between simulated and observed results. The tuning methodology, through a parametric simulation technique, implements a first stage to find an adjusted set of critical parameters which will be used to validate the predictive capability of the simulator in order to reduce the disagreement between observed data and simulated results. We concentrate our experiments in three significant monitoring stations, located at the lower basin of the Parańa River in Argentina, and the percentage of improvement over the original simulator values ranges from 33 to 60%. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32575 Luquet, Emilio; García, Pablo; Re, Mariano; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; Gaudiani, Adriana Angélica; et al.; Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction; Elsevier Science; Procedia Computer Science; 29; 6-2014; 299-309 1877-0509 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32575 |
identifier_str_mv |
Luquet, Emilio; García, Pablo; Re, Mariano; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; Gaudiani, Adriana Angélica; et al.; Computing, a Powerful Tool for Improving the Parameters Simulation Quality in Flood Prediction; Elsevier Science; Procedia Computer Science; 29; 6-2014; 299-309 1877-0509 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.procs.2014.05.027 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S187705091400204X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614060951207936 |
score |
13.070432 |