A generalization of Toeplitz operators on the Bergman space
- Autores
- Suarez, Fernando Daniel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If μ μ is a finite measure on the unit disc and k ⩾ 0 k⩾0 is an integer, we study a generalization derived from Engli\v{s}'s work, T ( k ) μ Tμ(k), of the traditional Toeplitz operators on the Bergman space \berg \berg, which are the case k = 0 k=0. Among other things, we prove that when μ ⩾ 0 μ⩾0, these operators are bounded if and only if μ μ is a Carleson measure, they are compact if and only if μ μ is a vanishing Carleson measure, and we obtain some estimates for their norms. Also, we use these operators to characterize the closure of the image of the Berezin transform applied to the whole operator algebra.
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
Bergman Space
Toeplitz Operators
Berezin Transform - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18960
Ver los metadatos del registro completo
id |
CONICETDig_c067ed1fb57c633466ed1cf955f19028 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18960 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A generalization of Toeplitz operators on the Bergman spaceSuarez, Fernando DanielBergman SpaceToeplitz OperatorsBerezin Transformhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If μ μ is a finite measure on the unit disc and k ⩾ 0 k⩾0 is an integer, we study a generalization derived from Engli\v{s}'s work, T ( k ) μ Tμ(k), of the traditional Toeplitz operators on the Bergman space \berg \berg, which are the case k = 0 k=0. Among other things, we prove that when μ ⩾ 0 μ⩾0, these operators are bounded if and only if μ μ is a Carleson measure, they are compact if and only if μ μ is a vanishing Carleson measure, and we obtain some estimates for their norms. Also, we use these operators to characterize the closure of the image of the Berezin transform applied to the whole operator algebra.Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaTheta Foundation2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18960Suarez, Fernando Daniel; A generalization of Toeplitz operators on the Bergman space; Theta Foundation; Journal Of Operator Theory; 73; 2; 8-2015; 315-3320379-4024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2013nov28.2023info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2015-073-002/2015-073-002-002.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:42Zoai:ri.conicet.gov.ar:11336/18960instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:43.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A generalization of Toeplitz operators on the Bergman space |
title |
A generalization of Toeplitz operators on the Bergman space |
spellingShingle |
A generalization of Toeplitz operators on the Bergman space Suarez, Fernando Daniel Bergman Space Toeplitz Operators Berezin Transform |
title_short |
A generalization of Toeplitz operators on the Bergman space |
title_full |
A generalization of Toeplitz operators on the Bergman space |
title_fullStr |
A generalization of Toeplitz operators on the Bergman space |
title_full_unstemmed |
A generalization of Toeplitz operators on the Bergman space |
title_sort |
A generalization of Toeplitz operators on the Bergman space |
dc.creator.none.fl_str_mv |
Suarez, Fernando Daniel |
author |
Suarez, Fernando Daniel |
author_facet |
Suarez, Fernando Daniel |
author_role |
author |
dc.subject.none.fl_str_mv |
Bergman Space Toeplitz Operators Berezin Transform |
topic |
Bergman Space Toeplitz Operators Berezin Transform |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
If μ μ is a finite measure on the unit disc and k ⩾ 0 k⩾0 is an integer, we study a generalization derived from Engli\v{s}'s work, T ( k ) μ Tμ(k), of the traditional Toeplitz operators on the Bergman space \berg \berg, which are the case k = 0 k=0. Among other things, we prove that when μ ⩾ 0 μ⩾0, these operators are bounded if and only if μ μ is a Carleson measure, they are compact if and only if μ μ is a vanishing Carleson measure, and we obtain some estimates for their norms. Also, we use these operators to characterize the closure of the image of the Berezin transform applied to the whole operator algebra. Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
If μ μ is a finite measure on the unit disc and k ⩾ 0 k⩾0 is an integer, we study a generalization derived from Engli\v{s}'s work, T ( k ) μ Tμ(k), of the traditional Toeplitz operators on the Bergman space \berg \berg, which are the case k = 0 k=0. Among other things, we prove that when μ ⩾ 0 μ⩾0, these operators are bounded if and only if μ μ is a Carleson measure, they are compact if and only if μ μ is a vanishing Carleson measure, and we obtain some estimates for their norms. Also, we use these operators to characterize the closure of the image of the Berezin transform applied to the whole operator algebra. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18960 Suarez, Fernando Daniel; A generalization of Toeplitz operators on the Bergman space; Theta Foundation; Journal Of Operator Theory; 73; 2; 8-2015; 315-332 0379-4024 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18960 |
identifier_str_mv |
Suarez, Fernando Daniel; A generalization of Toeplitz operators on the Bergman space; Theta Foundation; Journal Of Operator Theory; 73; 2; 8-2015; 315-332 0379-4024 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2013nov28.2023 info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2015-073-002/2015-073-002-002.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Theta Foundation |
publisher.none.fl_str_mv |
Theta Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613957628723200 |
score |
13.070432 |