Thermal expansion in nanoresonators
- Autores
- Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Moreno, Mariano F.; Carusela, María Florencia
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Inspired by some recent experiments and numerical works related to nanoresonators, we perform classical molecular dynamics simulations to investigate the thermal expansion and the ability of the device to act as a strain sensor assisted by thermally-induced vibrations. The proposed model consists in a chain of atoms interacting anharmonically with both ends clamped to thermal reservoirs. We analyze the thermal expansion and resonant frequency shifts as a function of temperature and the applied strain. For the transversal modes the shift is approximately linear with strain. We also present analytical results from canonical calculations in the harmonic approximation showing that thermal expansion is uniform along the device. This prediction also works when the system operates in a nonlinear oscillation regime at moderate and high temperatures.
Fil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Monastra, Alejandro Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Moreno, Mariano F.. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
MOLECULAR DYNAMICS
HEAT CONDUCTION
TRANSPORT PROCESSES/HEAT TRANSFER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46590
Ver los metadatos del registro completo
id |
CONICETDig_c0566193b924a0fe2caf724a788cacbe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46590 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thermal expansion in nanoresonatorsMancardo Viotti, Agustin MatiasMonastra, Alejandro GabrielMoreno, Mariano F.Carusela, María FlorenciaMOLECULAR DYNAMICSHEAT CONDUCTIONTRANSPORT PROCESSES/HEAT TRANSFERhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Inspired by some recent experiments and numerical works related to nanoresonators, we perform classical molecular dynamics simulations to investigate the thermal expansion and the ability of the device to act as a strain sensor assisted by thermally-induced vibrations. The proposed model consists in a chain of atoms interacting anharmonically with both ends clamped to thermal reservoirs. We analyze the thermal expansion and resonant frequency shifts as a function of temperature and the applied strain. For the transversal modes the shift is approximately linear with strain. We also present analytical results from canonical calculations in the harmonic approximation showing that thermal expansion is uniform along the device. This prediction also works when the system operates in a nonlinear oscillation regime at moderate and high temperatures.Fil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Monastra, Alejandro Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moreno, Mariano F.. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46590Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Moreno, Mariano F.; Carusela, María Florencia; Thermal expansion in nanoresonators; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2016; 8; 8-2016; 1-131742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2016/08/083201info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2016/08/083201info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1604.08628info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:17Zoai:ri.conicet.gov.ar:11336/46590instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:17.861CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thermal expansion in nanoresonators |
title |
Thermal expansion in nanoresonators |
spellingShingle |
Thermal expansion in nanoresonators Mancardo Viotti, Agustin Matias MOLECULAR DYNAMICS HEAT CONDUCTION TRANSPORT PROCESSES/HEAT TRANSFER |
title_short |
Thermal expansion in nanoresonators |
title_full |
Thermal expansion in nanoresonators |
title_fullStr |
Thermal expansion in nanoresonators |
title_full_unstemmed |
Thermal expansion in nanoresonators |
title_sort |
Thermal expansion in nanoresonators |
dc.creator.none.fl_str_mv |
Mancardo Viotti, Agustin Matias Monastra, Alejandro Gabriel Moreno, Mariano F. Carusela, María Florencia |
author |
Mancardo Viotti, Agustin Matias |
author_facet |
Mancardo Viotti, Agustin Matias Monastra, Alejandro Gabriel Moreno, Mariano F. Carusela, María Florencia |
author_role |
author |
author2 |
Monastra, Alejandro Gabriel Moreno, Mariano F. Carusela, María Florencia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
MOLECULAR DYNAMICS HEAT CONDUCTION TRANSPORT PROCESSES/HEAT TRANSFER |
topic |
MOLECULAR DYNAMICS HEAT CONDUCTION TRANSPORT PROCESSES/HEAT TRANSFER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Inspired by some recent experiments and numerical works related to nanoresonators, we perform classical molecular dynamics simulations to investigate the thermal expansion and the ability of the device to act as a strain sensor assisted by thermally-induced vibrations. The proposed model consists in a chain of atoms interacting anharmonically with both ends clamped to thermal reservoirs. We analyze the thermal expansion and resonant frequency shifts as a function of temperature and the applied strain. For the transversal modes the shift is approximately linear with strain. We also present analytical results from canonical calculations in the harmonic approximation showing that thermal expansion is uniform along the device. This prediction also works when the system operates in a nonlinear oscillation regime at moderate and high temperatures. Fil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Monastra, Alejandro Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Moreno, Mariano F.. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Inspired by some recent experiments and numerical works related to nanoresonators, we perform classical molecular dynamics simulations to investigate the thermal expansion and the ability of the device to act as a strain sensor assisted by thermally-induced vibrations. The proposed model consists in a chain of atoms interacting anharmonically with both ends clamped to thermal reservoirs. We analyze the thermal expansion and resonant frequency shifts as a function of temperature and the applied strain. For the transversal modes the shift is approximately linear with strain. We also present analytical results from canonical calculations in the harmonic approximation showing that thermal expansion is uniform along the device. This prediction also works when the system operates in a nonlinear oscillation regime at moderate and high temperatures. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46590 Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Moreno, Mariano F.; Carusela, María Florencia; Thermal expansion in nanoresonators; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2016; 8; 8-2016; 1-13 1742-5468 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46590 |
identifier_str_mv |
Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Moreno, Mariano F.; Carusela, María Florencia; Thermal expansion in nanoresonators; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2016; 8; 8-2016; 1-13 1742-5468 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2016/08/083201 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2016/08/083201 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1604.08628 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614404801298432 |
score |
13.070432 |