Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
- Autores
- Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.
Fil: Petaccia, Mauricio Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Segui Osorio, Silvina Inda Maria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Castellano, Gustavo Eugenio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
Characteristic Fluorescence Enhancement
Epma
Monte Carlo Simulation
Variance Reduction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51368
Ver los metadatos del registro completo
id |
CONICETDig_c015cae19c0a95403924fb6702d3ae25 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51368 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting techniquePetaccia, Mauricio GermánSegui Osorio, Silvina Inda MariaCastellano, Gustavo EugenioCharacteristic Fluorescence EnhancementEpmaMonte Carlo SimulationVariance Reductionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.Fil: Petaccia, Mauricio Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Segui Osorio, Silvina Inda Maria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Castellano, Gustavo Eugenio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaCambridge University Press2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51368Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio; Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique; Cambridge University Press; Microscopy & Microanalysis; 21; 3; 4-2015; 753-7581431-92761435-8115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S1431927615000495info:eu-repo/semantics/altIdentifier/url/https://bit.ly/2znSc6ninfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:18Zoai:ri.conicet.gov.ar:11336/51368instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:18.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique |
title |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique |
spellingShingle |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique Petaccia, Mauricio Germán Characteristic Fluorescence Enhancement Epma Monte Carlo Simulation Variance Reduction |
title_short |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique |
title_full |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique |
title_fullStr |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique |
title_full_unstemmed |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique |
title_sort |
Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique |
dc.creator.none.fl_str_mv |
Petaccia, Mauricio Germán Segui Osorio, Silvina Inda Maria Castellano, Gustavo Eugenio |
author |
Petaccia, Mauricio Germán |
author_facet |
Petaccia, Mauricio Germán Segui Osorio, Silvina Inda Maria Castellano, Gustavo Eugenio |
author_role |
author |
author2 |
Segui Osorio, Silvina Inda Maria Castellano, Gustavo Eugenio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Characteristic Fluorescence Enhancement Epma Monte Carlo Simulation Variance Reduction |
topic |
Characteristic Fluorescence Enhancement Epma Monte Carlo Simulation Variance Reduction |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities. Fil: Petaccia, Mauricio Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Segui Osorio, Silvina Inda Maria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Castellano, Gustavo Eugenio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51368 Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio; Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique; Cambridge University Press; Microscopy & Microanalysis; 21; 3; 4-2015; 753-758 1431-9276 1435-8115 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51368 |
identifier_str_mv |
Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio; Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique; Cambridge University Press; Microscopy & Microanalysis; 21; 3; 4-2015; 753-758 1431-9276 1435-8115 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S1431927615000495 info:eu-repo/semantics/altIdentifier/url/https://bit.ly/2znSc6n |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268785802739712 |
score |
13.13397 |