Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique

Autores
Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.
Fil: Petaccia, Mauricio Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Segui Osorio, Silvina Inda Maria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Castellano, Gustavo Eugenio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
Characteristic Fluorescence Enhancement
Epma
Monte Carlo Simulation
Variance Reduction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51368

id CONICETDig_c015cae19c0a95403924fb6702d3ae25
oai_identifier_str oai:ri.conicet.gov.ar:11336/51368
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting techniquePetaccia, Mauricio GermánSegui Osorio, Silvina Inda MariaCastellano, Gustavo EugenioCharacteristic Fluorescence EnhancementEpmaMonte Carlo SimulationVariance Reductionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.Fil: Petaccia, Mauricio Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Segui Osorio, Silvina Inda Maria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Castellano, Gustavo Eugenio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaCambridge University Press2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51368Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio; Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique; Cambridge University Press; Microscopy & Microanalysis; 21; 3; 4-2015; 753-7581431-92761435-8115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S1431927615000495info:eu-repo/semantics/altIdentifier/url/https://bit.ly/2znSc6ninfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:18Zoai:ri.conicet.gov.ar:11336/51368instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:18.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
title Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
spellingShingle Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
Petaccia, Mauricio Germán
Characteristic Fluorescence Enhancement
Epma
Monte Carlo Simulation
Variance Reduction
title_short Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
title_full Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
title_fullStr Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
title_full_unstemmed Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
title_sort Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique
dc.creator.none.fl_str_mv Petaccia, Mauricio Germán
Segui Osorio, Silvina Inda Maria
Castellano, Gustavo Eugenio
author Petaccia, Mauricio Germán
author_facet Petaccia, Mauricio Germán
Segui Osorio, Silvina Inda Maria
Castellano, Gustavo Eugenio
author_role author
author2 Segui Osorio, Silvina Inda Maria
Castellano, Gustavo Eugenio
author2_role author
author
dc.subject.none.fl_str_mv Characteristic Fluorescence Enhancement
Epma
Monte Carlo Simulation
Variance Reduction
topic Characteristic Fluorescence Enhancement
Epma
Monte Carlo Simulation
Variance Reduction
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.
Fil: Petaccia, Mauricio Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Segui Osorio, Silvina Inda Maria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Castellano, Gustavo Eugenio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51368
Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio; Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique; Cambridge University Press; Microscopy & Microanalysis; 21; 3; 4-2015; 753-758
1431-9276
1435-8115
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51368
identifier_str_mv Petaccia, Mauricio Germán; Segui Osorio, Silvina Inda Maria; Castellano, Gustavo Eugenio; Monte Carlo simulation of characteristic secondary fluorescence in electron probe microanalysis of homogeneous samples using the splitting technique; Cambridge University Press; Microscopy & Microanalysis; 21; 3; 4-2015; 753-758
1431-9276
1435-8115
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1017/S1431927615000495
info:eu-repo/semantics/altIdentifier/url/https://bit.ly/2znSc6n
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268785802739712
score 13.13397