On the breakup of fluid films of finite and infinite extent

Autores
Diez, Javier Alberto; Kondic, Lou
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other  hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results.
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Kondic, Lou. New Jersey Institute of Technology; Estados Unidos
Materia
THIN FILM
INSTABILITY
DROPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/239766

id CONICETDig_bfdd5094aa233735bab9b0e8978ca837
oai_identifier_str oai:ri.conicet.gov.ar:11336/239766
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the breakup of fluid films of finite and infinite extentDiez, Javier AlbertoKondic, LouTHIN FILMINSTABILITYDROPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other  hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results.Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Kondic, Lou. New Jersey Institute of Technology; Estados UnidosAmerican Institute of Physics2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239766Diez, Javier Alberto; Kondic, Lou; On the breakup of fluid films of finite and infinite extent; American Institute of Physics; Physics of Fluids; 19; 7; 12-2007; 1-221070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2749515info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:51Zoai:ri.conicet.gov.ar:11336/239766instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:51.575CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the breakup of fluid films of finite and infinite extent
title On the breakup of fluid films of finite and infinite extent
spellingShingle On the breakup of fluid films of finite and infinite extent
Diez, Javier Alberto
THIN FILM
INSTABILITY
DROPS
title_short On the breakup of fluid films of finite and infinite extent
title_full On the breakup of fluid films of finite and infinite extent
title_fullStr On the breakup of fluid films of finite and infinite extent
title_full_unstemmed On the breakup of fluid films of finite and infinite extent
title_sort On the breakup of fluid films of finite and infinite extent
dc.creator.none.fl_str_mv Diez, Javier Alberto
Kondic, Lou
author Diez, Javier Alberto
author_facet Diez, Javier Alberto
Kondic, Lou
author_role author
author2 Kondic, Lou
author2_role author
dc.subject.none.fl_str_mv THIN FILM
INSTABILITY
DROPS
topic THIN FILM
INSTABILITY
DROPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other  hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results.
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Kondic, Lou. New Jersey Institute of Technology; Estados Unidos
description We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other  hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/239766
Diez, Javier Alberto; Kondic, Lou; On the breakup of fluid films of finite and infinite extent; American Institute of Physics; Physics of Fluids; 19; 7; 12-2007; 1-22
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/239766
identifier_str_mv Diez, Javier Alberto; Kondic, Lou; On the breakup of fluid films of finite and infinite extent; American Institute of Physics; Physics of Fluids; 19; 7; 12-2007; 1-22
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2749515
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269721653673984
score 13.13397