On the breakup of fluid films of finite and infinite extent
- Autores
- Diez, Javier Alberto; Kondic, Lou
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results.
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Kondic, Lou. New Jersey Institute of Technology; Estados Unidos - Materia
-
THIN FILM
INSTABILITY
DROPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239766
Ver los metadatos del registro completo
id |
CONICETDig_bfdd5094aa233735bab9b0e8978ca837 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239766 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the breakup of fluid films of finite and infinite extentDiez, Javier AlbertoKondic, LouTHIN FILMINSTABILITYDROPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results.Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Kondic, Lou. New Jersey Institute of Technology; Estados UnidosAmerican Institute of Physics2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239766Diez, Javier Alberto; Kondic, Lou; On the breakup of fluid films of finite and infinite extent; American Institute of Physics; Physics of Fluids; 19; 7; 12-2007; 1-221070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2749515info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:51Zoai:ri.conicet.gov.ar:11336/239766instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:51.575CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the breakup of fluid films of finite and infinite extent |
title |
On the breakup of fluid films of finite and infinite extent |
spellingShingle |
On the breakup of fluid films of finite and infinite extent Diez, Javier Alberto THIN FILM INSTABILITY DROPS |
title_short |
On the breakup of fluid films of finite and infinite extent |
title_full |
On the breakup of fluid films of finite and infinite extent |
title_fullStr |
On the breakup of fluid films of finite and infinite extent |
title_full_unstemmed |
On the breakup of fluid films of finite and infinite extent |
title_sort |
On the breakup of fluid films of finite and infinite extent |
dc.creator.none.fl_str_mv |
Diez, Javier Alberto Kondic, Lou |
author |
Diez, Javier Alberto |
author_facet |
Diez, Javier Alberto Kondic, Lou |
author_role |
author |
author2 |
Kondic, Lou |
author2_role |
author |
dc.subject.none.fl_str_mv |
THIN FILM INSTABILITY DROPS |
topic |
THIN FILM INSTABILITY DROPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results. Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Kondic, Lou. New Jersey Institute of Technology; Estados Unidos |
description |
We study the dewetting process of thin fluid films that partially wet a solid surface. Using a long-wave lubrication approximation, we formulate a nonlinear partial differential equation governing the evolution of the film thickness, h. This equation includes the effects of capillarity, gravity, and an additional conjoining/disjoining pressure term to account for intermolecular forces. We perform standard linear stability analysis of an infinite flat film, and identify the corresponding stable, unstable, and metastable regions. Within this framework, we analyze the evolution of a semi-infinite film of length L in one direction. The numerical simulations show that for long and thin films, the dewetting fronts of the film generate a pearling process involving successive formation of ridges at the film ends and consecutive pinch-off behind these ridges. On the other hand, for shorter and thicker films, the evolution ends up by forming a single drop. The time evolution as well as the final drops pattern show a competition between the dewetting mechanisms caused by nucleation and by free surface instability. We find that precise computations, requiring quadrupole precision of computer arithmetic, are often needed to avoid spurious results. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239766 Diez, Javier Alberto; Kondic, Lou; On the breakup of fluid films of finite and infinite extent; American Institute of Physics; Physics of Fluids; 19; 7; 12-2007; 1-22 1070-6631 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239766 |
identifier_str_mv |
Diez, Javier Alberto; Kondic, Lou; On the breakup of fluid films of finite and infinite extent; American Institute of Physics; Physics of Fluids; 19; 7; 12-2007; 1-22 1070-6631 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2749515 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269721653673984 |
score |
13.13397 |