An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites
- Autores
- Capiel, Guillermina; Arrosio, Florencia; Alvarez, Vera Alejandra; Montemartini, Pablo Ezequiel; Morán, Juan
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system?s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time.
Fil: Capiel, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Arrosio, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Montemartini, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Morán, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
Artificial Neural Networks
Epoxy-Anhydride
Clay Nanocomposites
Water Absorption - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121284
Ver los metadatos del registro completo
id |
CONICETDig_bf3780487edba36eb4214400c059b2d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121284 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy compositesCapiel, GuillerminaArrosio, FlorenciaAlvarez, Vera AlejandraMontemartini, Pablo EzequielMorán, JuanArtificial Neural NetworksEpoxy-AnhydrideClay NanocompositesWater Absorptionhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system?s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time.Fil: Capiel, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Arrosio, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Montemartini, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Morán, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaScientific Research Publishing Inc.2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121284Capiel, Guillermina; Arrosio, Florencia; Alvarez, Vera Alejandra; Montemartini, Pablo Ezequiel; Morán, Juan; An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites; Scientific Research Publishing Inc.; Journal of Materials Science and Chemical Engineering; 07; 8; 7-2019; 87-972327-6053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/doi.aspx?DOI=10.4236/msce.2019.78010info:eu-repo/semantics/altIdentifier/doi/10.4236/msce.2019.78010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:28Zoai:ri.conicet.gov.ar:11336/121284instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:28.512CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites |
title |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites |
spellingShingle |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites Capiel, Guillermina Artificial Neural Networks Epoxy-Anhydride Clay Nanocomposites Water Absorption |
title_short |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites |
title_full |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites |
title_fullStr |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites |
title_full_unstemmed |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites |
title_sort |
An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites |
dc.creator.none.fl_str_mv |
Capiel, Guillermina Arrosio, Florencia Alvarez, Vera Alejandra Montemartini, Pablo Ezequiel Morán, Juan |
author |
Capiel, Guillermina |
author_facet |
Capiel, Guillermina Arrosio, Florencia Alvarez, Vera Alejandra Montemartini, Pablo Ezequiel Morán, Juan |
author_role |
author |
author2 |
Arrosio, Florencia Alvarez, Vera Alejandra Montemartini, Pablo Ezequiel Morán, Juan |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Artificial Neural Networks Epoxy-Anhydride Clay Nanocomposites Water Absorption |
topic |
Artificial Neural Networks Epoxy-Anhydride Clay Nanocomposites Water Absorption |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system?s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time. Fil: Capiel, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Arrosio, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Montemartini, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Morán, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system?s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121284 Capiel, Guillermina; Arrosio, Florencia; Alvarez, Vera Alejandra; Montemartini, Pablo Ezequiel; Morán, Juan; An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites; Scientific Research Publishing Inc.; Journal of Materials Science and Chemical Engineering; 07; 8; 7-2019; 87-97 2327-6053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121284 |
identifier_str_mv |
Capiel, Guillermina; Arrosio, Florencia; Alvarez, Vera Alejandra; Montemartini, Pablo Ezequiel; Morán, Juan; An artificial neural network (ANN) model for predicting water absorption of nanoclay-epoxy composites; Scientific Research Publishing Inc.; Journal of Materials Science and Chemical Engineering; 07; 8; 7-2019; 87-97 2327-6053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/doi.aspx?DOI=10.4236/msce.2019.78010 info:eu-repo/semantics/altIdentifier/doi/10.4236/msce.2019.78010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research Publishing Inc. |
publisher.none.fl_str_mv |
Scientific Research Publishing Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269582032633856 |
score |
13.13397 |