Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge
- Autores
- Ratazzi, Alejandro R.; Bambill, Diana Virginia; Rossit, Carlos Adolfo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending vibration are derived using Hamilton's principle. The exact expression for natural frequencies is obtained using the calculus of variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with values of particular cases of the model available in the literature, and with measurements in an experimental device.
Fil: Ratazzi, Alejandro R.. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Bambill, Diana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Rossit, Carlos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina - Materia
-
BEAMS
STRUCTURES
ELASTIC HINGE
FREE VIBRATIONS
ELASTIC BOUNDARY CONDITIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10440
Ver los metadatos del registro completo
id |
CONICETDig_bed2b321c7efb08043b66ecfcd7a0b14 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10440 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic HingeRatazzi, Alejandro R.Bambill, Diana VirginiaRossit, Carlos AdolfoBEAMSSTRUCTURESELASTIC HINGEFREE VIBRATIONSELASTIC BOUNDARY CONDITIONShttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending vibration are derived using Hamilton's principle. The exact expression for natural frequencies is obtained using the calculus of variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with values of particular cases of the model available in the literature, and with measurements in an experimental device.Fil: Ratazzi, Alejandro R.. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Bambill, Diana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Carlos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaHindawi Publishing Corporation2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10440Ratazzi, Alejandro R.; Bambill, Diana Virginia; Rossit, Carlos Adolfo; Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge; Hindawi Publishing Corporation; Chinese Journal of Engineering; 2013; 9-2013; 1-102314-8063enginfo:eu-repo/semantics/altIdentifier/url/http://www.hindawi.com/journals/cje/2013/624658/info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1155/2013/624658info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:25:00Zoai:ri.conicet.gov.ar:11336/10440instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:25:00.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge |
title |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge |
spellingShingle |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge Ratazzi, Alejandro R. BEAMS STRUCTURES ELASTIC HINGE FREE VIBRATIONS ELASTIC BOUNDARY CONDITIONS |
title_short |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge |
title_full |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge |
title_fullStr |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge |
title_full_unstemmed |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge |
title_sort |
Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge |
dc.creator.none.fl_str_mv |
Ratazzi, Alejandro R. Bambill, Diana Virginia Rossit, Carlos Adolfo |
author |
Ratazzi, Alejandro R. |
author_facet |
Ratazzi, Alejandro R. Bambill, Diana Virginia Rossit, Carlos Adolfo |
author_role |
author |
author2 |
Bambill, Diana Virginia Rossit, Carlos Adolfo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BEAMS STRUCTURES ELASTIC HINGE FREE VIBRATIONS ELASTIC BOUNDARY CONDITIONS |
topic |
BEAMS STRUCTURES ELASTIC HINGE FREE VIBRATIONS ELASTIC BOUNDARY CONDITIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending vibration are derived using Hamilton's principle. The exact expression for natural frequencies is obtained using the calculus of variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with values of particular cases of the model available in the literature, and with measurements in an experimental device. Fil: Ratazzi, Alejandro R.. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Bambill, Diana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Rossit, Carlos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina |
description |
The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending vibration are derived using Hamilton's principle. The exact expression for natural frequencies is obtained using the calculus of variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with values of particular cases of the model available in the literature, and with measurements in an experimental device. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10440 Ratazzi, Alejandro R.; Bambill, Diana Virginia; Rossit, Carlos Adolfo; Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge; Hindawi Publishing Corporation; Chinese Journal of Engineering; 2013; 9-2013; 1-10 2314-8063 |
url |
http://hdl.handle.net/11336/10440 |
identifier_str_mv |
Ratazzi, Alejandro R.; Bambill, Diana Virginia; Rossit, Carlos Adolfo; Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge; Hindawi Publishing Corporation; Chinese Journal of Engineering; 2013; 9-2013; 1-10 2314-8063 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.hindawi.com/journals/cje/2013/624658/ info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1155/2013/624658 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981388430606336 |
score |
12.48226 |