Gravitational-Wave Instabilities in Rotating Compact Stars
- Autores
- Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; Saavedra, Nathaniel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).
Fil: Bratton, Eric L.. San Diego State University; Estados Unidos
Fil: Lin, Zikun. Chinese Academy of Sciences; República de China
Fil: Weber, Fridolin. Chinese Academy of Sciences; República de China
Fil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Saavedra, Nathaniel. San Diego State University; Estados Unidos - Materia
-
COMPACT STARS
EQUATION OF STATE
GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES
NEUTRON STARS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/217793
Ver los metadatos del registro completo
id |
CONICETDig_be389ecd9ce78428f4a7bf767b6e5a81 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/217793 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gravitational-Wave Instabilities in Rotating Compact StarsBratton, Eric L.Lin, ZikunWeber, FridolinOrsaria, Milva GabrielaRanea Sandoval, Ignacio FranciscoSaavedra, NathanielCOMPACT STARSEQUATION OF STATEGRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIESNEUTRON STARShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).Fil: Bratton, Eric L.. San Diego State University; Estados UnidosFil: Lin, Zikun. Chinese Academy of Sciences; República de ChinaFil: Weber, Fridolin. Chinese Academy of Sciences; República de ChinaFil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Saavedra, Nathaniel. San Diego State University; Estados UnidosMDPI2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217793Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; et al.; Gravitational-Wave Instabilities in Rotating Compact Stars; MDPI; Galaxies; 10; 5; 10-2022; 1-232075-4434CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4434/10/5/94info:eu-repo/semantics/altIdentifier/doi/10.3390/galaxies10050094info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:31Zoai:ri.conicet.gov.ar:11336/217793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:32.253CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gravitational-Wave Instabilities in Rotating Compact Stars |
title |
Gravitational-Wave Instabilities in Rotating Compact Stars |
spellingShingle |
Gravitational-Wave Instabilities in Rotating Compact Stars Bratton, Eric L. COMPACT STARS EQUATION OF STATE GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES NEUTRON STARS |
title_short |
Gravitational-Wave Instabilities in Rotating Compact Stars |
title_full |
Gravitational-Wave Instabilities in Rotating Compact Stars |
title_fullStr |
Gravitational-Wave Instabilities in Rotating Compact Stars |
title_full_unstemmed |
Gravitational-Wave Instabilities in Rotating Compact Stars |
title_sort |
Gravitational-Wave Instabilities in Rotating Compact Stars |
dc.creator.none.fl_str_mv |
Bratton, Eric L. Lin, Zikun Weber, Fridolin Orsaria, Milva Gabriela Ranea Sandoval, Ignacio Francisco Saavedra, Nathaniel |
author |
Bratton, Eric L. |
author_facet |
Bratton, Eric L. Lin, Zikun Weber, Fridolin Orsaria, Milva Gabriela Ranea Sandoval, Ignacio Francisco Saavedra, Nathaniel |
author_role |
author |
author2 |
Lin, Zikun Weber, Fridolin Orsaria, Milva Gabriela Ranea Sandoval, Ignacio Francisco Saavedra, Nathaniel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COMPACT STARS EQUATION OF STATE GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES NEUTRON STARS |
topic |
COMPACT STARS EQUATION OF STATE GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES NEUTRON STARS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period). Fil: Bratton, Eric L.. San Diego State University; Estados Unidos Fil: Lin, Zikun. Chinese Academy of Sciences; República de China Fil: Weber, Fridolin. Chinese Academy of Sciences; República de China Fil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Saavedra, Nathaniel. San Diego State University; Estados Unidos |
description |
It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/217793 Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; et al.; Gravitational-Wave Instabilities in Rotating Compact Stars; MDPI; Galaxies; 10; 5; 10-2022; 1-23 2075-4434 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/217793 |
identifier_str_mv |
Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; et al.; Gravitational-Wave Instabilities in Rotating Compact Stars; MDPI; Galaxies; 10; 5; 10-2022; 1-23 2075-4434 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4434/10/5/94 info:eu-repo/semantics/altIdentifier/doi/10.3390/galaxies10050094 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614483362709504 |
score |
13.070432 |