Gravitational-Wave Instabilities in Rotating Compact Stars

Autores
Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; Saavedra, Nathaniel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).
Fil: Bratton, Eric L.. San Diego State University; Estados Unidos
Fil: Lin, Zikun. Chinese Academy of Sciences; República de China
Fil: Weber, Fridolin. Chinese Academy of Sciences; República de China
Fil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Saavedra, Nathaniel. San Diego State University; Estados Unidos
Materia
COMPACT STARS
EQUATION OF STATE
GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES
NEUTRON STARS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/217793

id CONICETDig_be389ecd9ce78428f4a7bf767b6e5a81
oai_identifier_str oai:ri.conicet.gov.ar:11336/217793
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gravitational-Wave Instabilities in Rotating Compact StarsBratton, Eric L.Lin, ZikunWeber, FridolinOrsaria, Milva GabrielaRanea Sandoval, Ignacio FranciscoSaavedra, NathanielCOMPACT STARSEQUATION OF STATEGRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIESNEUTRON STARShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).Fil: Bratton, Eric L.. San Diego State University; Estados UnidosFil: Lin, Zikun. Chinese Academy of Sciences; República de ChinaFil: Weber, Fridolin. Chinese Academy of Sciences; República de ChinaFil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Saavedra, Nathaniel. San Diego State University; Estados UnidosMDPI2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217793Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; et al.; Gravitational-Wave Instabilities in Rotating Compact Stars; MDPI; Galaxies; 10; 5; 10-2022; 1-232075-4434CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4434/10/5/94info:eu-repo/semantics/altIdentifier/doi/10.3390/galaxies10050094info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:31Zoai:ri.conicet.gov.ar:11336/217793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:32.253CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gravitational-Wave Instabilities in Rotating Compact Stars
title Gravitational-Wave Instabilities in Rotating Compact Stars
spellingShingle Gravitational-Wave Instabilities in Rotating Compact Stars
Bratton, Eric L.
COMPACT STARS
EQUATION OF STATE
GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES
NEUTRON STARS
title_short Gravitational-Wave Instabilities in Rotating Compact Stars
title_full Gravitational-Wave Instabilities in Rotating Compact Stars
title_fullStr Gravitational-Wave Instabilities in Rotating Compact Stars
title_full_unstemmed Gravitational-Wave Instabilities in Rotating Compact Stars
title_sort Gravitational-Wave Instabilities in Rotating Compact Stars
dc.creator.none.fl_str_mv Bratton, Eric L.
Lin, Zikun
Weber, Fridolin
Orsaria, Milva Gabriela
Ranea Sandoval, Ignacio Francisco
Saavedra, Nathaniel
author Bratton, Eric L.
author_facet Bratton, Eric L.
Lin, Zikun
Weber, Fridolin
Orsaria, Milva Gabriela
Ranea Sandoval, Ignacio Francisco
Saavedra, Nathaniel
author_role author
author2 Lin, Zikun
Weber, Fridolin
Orsaria, Milva Gabriela
Ranea Sandoval, Ignacio Francisco
Saavedra, Nathaniel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv COMPACT STARS
EQUATION OF STATE
GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES
NEUTRON STARS
topic COMPACT STARS
EQUATION OF STATE
GRAVITATIONAL RADIATION-REACTION DRIVEN INSTABILITIES
NEUTRON STARS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).
Fil: Bratton, Eric L.. San Diego State University; Estados Unidos
Fil: Lin, Zikun. Chinese Academy of Sciences; República de China
Fil: Weber, Fridolin. Chinese Academy of Sciences; República de China
Fil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Saavedra, Nathaniel. San Diego State University; Estados Unidos
description It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with (Formula presented.) sets the limit of stable rotation for cold neutron stars ((Formula presented.) K) with masses between (Formula presented.) and (Formula presented.). This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between (Formula presented.) and (Formula presented.), the (Formula presented.) instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/217793
Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; et al.; Gravitational-Wave Instabilities in Rotating Compact Stars; MDPI; Galaxies; 10; 5; 10-2022; 1-23
2075-4434
CONICET Digital
CONICET
url http://hdl.handle.net/11336/217793
identifier_str_mv Bratton, Eric L.; Lin, Zikun; Weber, Fridolin; Orsaria, Milva Gabriela; Ranea Sandoval, Ignacio Francisco; et al.; Gravitational-Wave Instabilities in Rotating Compact Stars; MDPI; Galaxies; 10; 5; 10-2022; 1-23
2075-4434
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4434/10/5/94
info:eu-repo/semantics/altIdentifier/doi/10.3390/galaxies10050094
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614483362709504
score 13.070432