Monte Carlo sampling variant of the DSSV14 set of helicity parton densities

Autores
de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method.
Fil: de Florian, Daniel Enrique. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lucero, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Sassot, Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Stratmann, Marco. Universitat of Tubingen; Alemania
Fil: Vogelsang, Werner. Universitat of Tubingen; Alemania
Materia
QCD
PARTON
HELICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/147548

id CONICETDig_bdfa950b80a83532f0f5002af30aece3
oai_identifier_str oai:ri.conicet.gov.ar:11336/147548
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Monte Carlo sampling variant of the DSSV14 set of helicity parton densitiesde Florian, Daniel EnriqueLucero, Gonzalo AgustinSassot, RodolfoStratmann, MarcoVogelsang, WernerQCDPARTONHELICITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method.Fil: de Florian, Daniel Enrique. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lucero, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Sassot, Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Stratmann, Marco. Universitat of Tubingen; AlemaniaFil: Vogelsang, Werner. Universitat of Tubingen; AlemaniaAmerican Physical Society2019-12-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147548de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner; Monte Carlo sampling variant of the DSSV14 set of helicity parton densities; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 11; 18-12-2019; 1-122470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.114027info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.114027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:41Zoai:ri.conicet.gov.ar:11336/147548instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:41.338CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
title Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
spellingShingle Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
de Florian, Daniel Enrique
QCD
PARTON
HELICITY
title_short Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
title_full Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
title_fullStr Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
title_full_unstemmed Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
title_sort Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
dc.creator.none.fl_str_mv de Florian, Daniel Enrique
Lucero, Gonzalo Agustin
Sassot, Rodolfo
Stratmann, Marco
Vogelsang, Werner
author de Florian, Daniel Enrique
author_facet de Florian, Daniel Enrique
Lucero, Gonzalo Agustin
Sassot, Rodolfo
Stratmann, Marco
Vogelsang, Werner
author_role author
author2 Lucero, Gonzalo Agustin
Sassot, Rodolfo
Stratmann, Marco
Vogelsang, Werner
author2_role author
author
author
author
dc.subject.none.fl_str_mv QCD
PARTON
HELICITY
topic QCD
PARTON
HELICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method.
Fil: de Florian, Daniel Enrique. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lucero, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Sassot, Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Stratmann, Marco. Universitat of Tubingen; Alemania
Fil: Vogelsang, Werner. Universitat of Tubingen; Alemania
description We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/147548
de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner; Monte Carlo sampling variant of the DSSV14 set of helicity parton densities; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 11; 18-12-2019; 1-12
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/147548
identifier_str_mv de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner; Monte Carlo sampling variant of the DSSV14 set of helicity parton densities; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 11; 18-12-2019; 1-12
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.114027
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.114027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614113715552256
score 13.070432