Monte Carlo sampling variant of the DSSV14 set of helicity parton densities
- Autores
- de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method.
Fil: de Florian, Daniel Enrique. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lucero, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Sassot, Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Stratmann, Marco. Universitat of Tubingen; Alemania
Fil: Vogelsang, Werner. Universitat of Tubingen; Alemania - Materia
-
QCD
PARTON
HELICITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/147548
Ver los metadatos del registro completo
id |
CONICETDig_bdfa950b80a83532f0f5002af30aece3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/147548 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densitiesde Florian, Daniel EnriqueLucero, Gonzalo AgustinSassot, RodolfoStratmann, MarcoVogelsang, WernerQCDPARTONHELICITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method.Fil: de Florian, Daniel Enrique. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lucero, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Sassot, Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Stratmann, Marco. Universitat of Tubingen; AlemaniaFil: Vogelsang, Werner. Universitat of Tubingen; AlemaniaAmerican Physical Society2019-12-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147548de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner; Monte Carlo sampling variant of the DSSV14 set of helicity parton densities; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 11; 18-12-2019; 1-122470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.114027info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.114027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:41Zoai:ri.conicet.gov.ar:11336/147548instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:41.338CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities |
title |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities |
spellingShingle |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities de Florian, Daniel Enrique QCD PARTON HELICITY |
title_short |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities |
title_full |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities |
title_fullStr |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities |
title_full_unstemmed |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities |
title_sort |
Monte Carlo sampling variant of the DSSV14 set of helicity parton densities |
dc.creator.none.fl_str_mv |
de Florian, Daniel Enrique Lucero, Gonzalo Agustin Sassot, Rodolfo Stratmann, Marco Vogelsang, Werner |
author |
de Florian, Daniel Enrique |
author_facet |
de Florian, Daniel Enrique Lucero, Gonzalo Agustin Sassot, Rodolfo Stratmann, Marco Vogelsang, Werner |
author_role |
author |
author2 |
Lucero, Gonzalo Agustin Sassot, Rodolfo Stratmann, Marco Vogelsang, Werner |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
QCD PARTON HELICITY |
topic |
QCD PARTON HELICITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method. Fil: de Florian, Daniel Enrique. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lucero, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Sassot, Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Stratmann, Marco. Universitat of Tubingen; Alemania Fil: Vogelsang, Werner. Universitat of Tubingen; Alemania |
description |
We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14 global analysis. Instead of adopting the simplest possible functional forms for the helicity parton distributions and imposing certain restrictions on their parameter space in order to constrain them, we employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance, respectively. We compare our results to those obtained by the traditional fitting approach and to the uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further constraining the elusive gluon helicity density through the reweighting method. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/147548 de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner; Monte Carlo sampling variant of the DSSV14 set of helicity parton densities; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 11; 18-12-2019; 1-12 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/147548 |
identifier_str_mv |
de Florian, Daniel Enrique; Lucero, Gonzalo Agustin; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner; Monte Carlo sampling variant of the DSSV14 set of helicity parton densities; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 100; 11; 18-12-2019; 1-12 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.100.114027 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.100.114027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614113715552256 |
score |
13.070432 |