Surveying biomolecular frustration at atomic resolution
- Autores
- Chen, Mingchen; Chen, Xun; Schafer, Nicholas P.; Clementi, Cecilia; Komives, Elizabeth A.; Ferreiro, Diego; Wolynes, Peter G.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To function, biomolecules require sufficient specificity of interaction as well as stability to live in the cell while still being able to move. Thermodynamic stability of only a limited number of specific structures is important so as to prevent promiscuous interactions. The individual interactions in proteins, therefore, have evolved collectively to give funneled minimally frustrated landscapes but some strategic parts of biomolecular sequences located at specific sites in the structure have been selected to be frustrated in order to allow both motion and interaction with partners. We describe a framework efficiently to quantify and localize biomolecular frustration at atomic resolution by examining the statistics of the energy changes that occur when the local environment of a site is changed. The location of patches of highly frustrated interactions correlates with key biological locations needed for physiological function. At atomic resolution, it becomes possible to extend frustration analysis to proteinligand complexes. At this resolution one sees that drug specificity is correlated with there being a minimally frustrated binding pocket leading to a funneled binding landscape. Atomistic frustration analysis provides a route for screening for more specific compounds for drug discovery
Fil: Chen, Mingchen. Rice University; Estados Unidos
Fil: Chen, Xun. Rice University; Estados Unidos
Fil: Schafer, Nicholas P.. Rice University; Estados Unidos
Fil: Clementi, Cecilia. Rice University; Estados Unidos
Fil: Komives, Elizabeth A.. University of California at San Diego; Estados Unidos
Fil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wolynes, Peter G.. Rice University; Estados Unidos - Materia
-
Protein Function
Local Frustration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143211
Ver los metadatos del registro completo
id |
CONICETDig_bd6a98653361c6bd9152539f0c490dab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143211 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Surveying biomolecular frustration at atomic resolutionChen, MingchenChen, XunSchafer, Nicholas P.Clementi, CeciliaKomives, Elizabeth A.Ferreiro, DiegoWolynes, Peter G.Protein FunctionLocal Frustrationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1To function, biomolecules require sufficient specificity of interaction as well as stability to live in the cell while still being able to move. Thermodynamic stability of only a limited number of specific structures is important so as to prevent promiscuous interactions. The individual interactions in proteins, therefore, have evolved collectively to give funneled minimally frustrated landscapes but some strategic parts of biomolecular sequences located at specific sites in the structure have been selected to be frustrated in order to allow both motion and interaction with partners. We describe a framework efficiently to quantify and localize biomolecular frustration at atomic resolution by examining the statistics of the energy changes that occur when the local environment of a site is changed. The location of patches of highly frustrated interactions correlates with key biological locations needed for physiological function. At atomic resolution, it becomes possible to extend frustration analysis to proteinligand complexes. At this resolution one sees that drug specificity is correlated with there being a minimally frustrated binding pocket leading to a funneled binding landscape. Atomistic frustration analysis provides a route for screening for more specific compounds for drug discoveryFil: Chen, Mingchen. Rice University; Estados UnidosFil: Chen, Xun. Rice University; Estados UnidosFil: Schafer, Nicholas P.. Rice University; Estados UnidosFil: Clementi, Cecilia. Rice University; Estados UnidosFil: Komives, Elizabeth A.. University of California at San Diego; Estados UnidosFil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wolynes, Peter G.. Rice University; Estados UnidosNature2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143211Chen, Mingchen; Chen, Xun; Schafer, Nicholas P.; Clementi, Cecilia; Komives, Elizabeth A.; et al.; Surveying biomolecular frustration at atomic resolution; Nature; Nature Communications; 11; 5944; 11-2020; 1-92041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19560-9info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-19560-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:53Zoai:ri.conicet.gov.ar:11336/143211instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:54.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Surveying biomolecular frustration at atomic resolution |
title |
Surveying biomolecular frustration at atomic resolution |
spellingShingle |
Surveying biomolecular frustration at atomic resolution Chen, Mingchen Protein Function Local Frustration |
title_short |
Surveying biomolecular frustration at atomic resolution |
title_full |
Surveying biomolecular frustration at atomic resolution |
title_fullStr |
Surveying biomolecular frustration at atomic resolution |
title_full_unstemmed |
Surveying biomolecular frustration at atomic resolution |
title_sort |
Surveying biomolecular frustration at atomic resolution |
dc.creator.none.fl_str_mv |
Chen, Mingchen Chen, Xun Schafer, Nicholas P. Clementi, Cecilia Komives, Elizabeth A. Ferreiro, Diego Wolynes, Peter G. |
author |
Chen, Mingchen |
author_facet |
Chen, Mingchen Chen, Xun Schafer, Nicholas P. Clementi, Cecilia Komives, Elizabeth A. Ferreiro, Diego Wolynes, Peter G. |
author_role |
author |
author2 |
Chen, Xun Schafer, Nicholas P. Clementi, Cecilia Komives, Elizabeth A. Ferreiro, Diego Wolynes, Peter G. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Protein Function Local Frustration |
topic |
Protein Function Local Frustration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
To function, biomolecules require sufficient specificity of interaction as well as stability to live in the cell while still being able to move. Thermodynamic stability of only a limited number of specific structures is important so as to prevent promiscuous interactions. The individual interactions in proteins, therefore, have evolved collectively to give funneled minimally frustrated landscapes but some strategic parts of biomolecular sequences located at specific sites in the structure have been selected to be frustrated in order to allow both motion and interaction with partners. We describe a framework efficiently to quantify and localize biomolecular frustration at atomic resolution by examining the statistics of the energy changes that occur when the local environment of a site is changed. The location of patches of highly frustrated interactions correlates with key biological locations needed for physiological function. At atomic resolution, it becomes possible to extend frustration analysis to proteinligand complexes. At this resolution one sees that drug specificity is correlated with there being a minimally frustrated binding pocket leading to a funneled binding landscape. Atomistic frustration analysis provides a route for screening for more specific compounds for drug discovery Fil: Chen, Mingchen. Rice University; Estados Unidos Fil: Chen, Xun. Rice University; Estados Unidos Fil: Schafer, Nicholas P.. Rice University; Estados Unidos Fil: Clementi, Cecilia. Rice University; Estados Unidos Fil: Komives, Elizabeth A.. University of California at San Diego; Estados Unidos Fil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Wolynes, Peter G.. Rice University; Estados Unidos |
description |
To function, biomolecules require sufficient specificity of interaction as well as stability to live in the cell while still being able to move. Thermodynamic stability of only a limited number of specific structures is important so as to prevent promiscuous interactions. The individual interactions in proteins, therefore, have evolved collectively to give funneled minimally frustrated landscapes but some strategic parts of biomolecular sequences located at specific sites in the structure have been selected to be frustrated in order to allow both motion and interaction with partners. We describe a framework efficiently to quantify and localize biomolecular frustration at atomic resolution by examining the statistics of the energy changes that occur when the local environment of a site is changed. The location of patches of highly frustrated interactions correlates with key biological locations needed for physiological function. At atomic resolution, it becomes possible to extend frustration analysis to proteinligand complexes. At this resolution one sees that drug specificity is correlated with there being a minimally frustrated binding pocket leading to a funneled binding landscape. Atomistic frustration analysis provides a route for screening for more specific compounds for drug discovery |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143211 Chen, Mingchen; Chen, Xun; Schafer, Nicholas P.; Clementi, Cecilia; Komives, Elizabeth A.; et al.; Surveying biomolecular frustration at atomic resolution; Nature; Nature Communications; 11; 5944; 11-2020; 1-9 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143211 |
identifier_str_mv |
Chen, Mingchen; Chen, Xun; Schafer, Nicholas P.; Clementi, Cecilia; Komives, Elizabeth A.; et al.; Surveying biomolecular frustration at atomic resolution; Nature; Nature Communications; 11; 5944; 11-2020; 1-9 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19560-9 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-19560-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613944356896768 |
score |
13.070432 |