Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control
- Autores
- García, Sarah M.; Kopuchian, Cecilia; Mindlin, Bernardo Gabriel; Fuxjager, Matthew; Tubaro, Pablo Luis; Goller, Franz
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart the respective contributions of these two factors. Avian vocal learning and its associated neural adaptations are thought to have played a major role in the diversification of birds [4-8], whereas the functional significance of the substantial morphological diversity of the vocal organ itself remains largely unexplored. Within the most species rich order, Passeriformes, ?tracheophones? are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and are thought to phonate with a pair of tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14]. Here we provide direct videoscopic evidence that tracheophones possess three sound sources, two oscine-like labial pairs in addition to the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of being the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with the labia, contributes to the generation of different acoustic features such as spectral complexity, amplitude modulation and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of the two labial sources [15-17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control.
Fil: García, Sarah M.. University Of Utah. Department Of Biology; Estados Unidos
Fil: Kopuchian, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentina
Fil: Mindlin, Bernardo Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Fuxjager, Matthew. Wake Forest Universit. Department Of Biology; Estados Unidos
Fil: Tubaro, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentina
Fil: Goller, Franz. University Of Utah. Department Of Biology; Estados Unidos - Materia
-
Syrinx
Tracheophone
Suboscine
Functional Morphology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48949
Ver los metadatos del registro completo
id |
CONICETDig_bd4fee92327cb08abed8d3e3021552f9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48949 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural controlGarcía, Sarah M.Kopuchian, CeciliaMindlin, Bernardo GabrielFuxjager, MatthewTubaro, Pablo LuisGoller, FranzSyrinxTracheophoneSuboscineFunctional Morphologyhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart the respective contributions of these two factors. Avian vocal learning and its associated neural adaptations are thought to have played a major role in the diversification of birds [4-8], whereas the functional significance of the substantial morphological diversity of the vocal organ itself remains largely unexplored. Within the most species rich order, Passeriformes, ?tracheophones? are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and are thought to phonate with a pair of tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14]. Here we provide direct videoscopic evidence that tracheophones possess three sound sources, two oscine-like labial pairs in addition to the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of being the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with the labia, contributes to the generation of different acoustic features such as spectral complexity, amplitude modulation and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of the two labial sources [15-17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control.Fil: García, Sarah M.. University Of Utah. Department Of Biology; Estados UnidosFil: Kopuchian, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; ArgentinaFil: Mindlin, Bernardo Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Fuxjager, Matthew. Wake Forest Universit. Department Of Biology; Estados UnidosFil: Tubaro, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; ArgentinaFil: Goller, Franz. University Of Utah. Department Of Biology; Estados UnidosCell Press2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48949García, Sarah M.; Kopuchian, Cecilia; Mindlin, Bernardo Gabriel; Fuxjager, Matthew; Tubaro, Pablo Luis; et al.; Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control; Cell Press; Current Biology; 27; 17; 7-2017; 2677-2683; e30960-9822CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960982217309636info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cub.2017.07.059info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:04Zoai:ri.conicet.gov.ar:11336/48949instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:05.104CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control |
title |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control |
spellingShingle |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control García, Sarah M. Syrinx Tracheophone Suboscine Functional Morphology |
title_short |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control |
title_full |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control |
title_fullStr |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control |
title_full_unstemmed |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control |
title_sort |
Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control |
dc.creator.none.fl_str_mv |
García, Sarah M. Kopuchian, Cecilia Mindlin, Bernardo Gabriel Fuxjager, Matthew Tubaro, Pablo Luis Goller, Franz |
author |
García, Sarah M. |
author_facet |
García, Sarah M. Kopuchian, Cecilia Mindlin, Bernardo Gabriel Fuxjager, Matthew Tubaro, Pablo Luis Goller, Franz |
author_role |
author |
author2 |
Kopuchian, Cecilia Mindlin, Bernardo Gabriel Fuxjager, Matthew Tubaro, Pablo Luis Goller, Franz |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Syrinx Tracheophone Suboscine Functional Morphology |
topic |
Syrinx Tracheophone Suboscine Functional Morphology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart the respective contributions of these two factors. Avian vocal learning and its associated neural adaptations are thought to have played a major role in the diversification of birds [4-8], whereas the functional significance of the substantial morphological diversity of the vocal organ itself remains largely unexplored. Within the most species rich order, Passeriformes, ?tracheophones? are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and are thought to phonate with a pair of tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14]. Here we provide direct videoscopic evidence that tracheophones possess three sound sources, two oscine-like labial pairs in addition to the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of being the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with the labia, contributes to the generation of different acoustic features such as spectral complexity, amplitude modulation and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of the two labial sources [15-17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control. Fil: García, Sarah M.. University Of Utah. Department Of Biology; Estados Unidos Fil: Kopuchian, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentina Fil: Mindlin, Bernardo Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Fuxjager, Matthew. Wake Forest Universit. Department Of Biology; Estados Unidos Fil: Tubaro, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentina Fil: Goller, Franz. University Of Utah. Department Of Biology; Estados Unidos |
description |
The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart the respective contributions of these two factors. Avian vocal learning and its associated neural adaptations are thought to have played a major role in the diversification of birds [4-8], whereas the functional significance of the substantial morphological diversity of the vocal organ itself remains largely unexplored. Within the most species rich order, Passeriformes, ?tracheophones? are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and are thought to phonate with a pair of tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14]. Here we provide direct videoscopic evidence that tracheophones possess three sound sources, two oscine-like labial pairs in addition to the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of being the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with the labia, contributes to the generation of different acoustic features such as spectral complexity, amplitude modulation and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of the two labial sources [15-17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48949 García, Sarah M.; Kopuchian, Cecilia; Mindlin, Bernardo Gabriel; Fuxjager, Matthew; Tubaro, Pablo Luis; et al.; Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control; Cell Press; Current Biology; 27; 17; 7-2017; 2677-2683; e3 0960-9822 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48949 |
identifier_str_mv |
García, Sarah M.; Kopuchian, Cecilia; Mindlin, Bernardo Gabriel; Fuxjager, Matthew; Tubaro, Pablo Luis; et al.; Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control; Cell Press; Current Biology; 27; 17; 7-2017; 2677-2683; e3 0960-9822 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960982217309636 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cub.2017.07.059 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cell Press |
publisher.none.fl_str_mv |
Cell Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614296242225152 |
score |
13.070432 |