Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation

Autores
Araneo, Diego Christian; Villalba, Ricardo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Climate-induced changes in the annual regime of snow-fed rivers have serious implications for water resource management. In the Central Andes (CA, 28°–36°S) of Argentina–Chile, the snow accumulated in high-elevation mountains in winter is the dominant component of streamflows during the spring–summer melting season. Although topography introduces complexity in snowpack responses to the annual temperature cycle, streamflow series over a century in length make the CA particularly suitable for identification of long-term hydrological changes. Principal component (PC) analysis of Río Atuel annual hydrographs from 1906 to 2012 discriminates between precipitation- and temperature-related components associated with variations in snow accumulation (49% of variance) and advances/delays of the streamflow annual peak (21% of variance), respectively. The temporal evolution of PC1 loadings reveals a predominant negative period from 1917 to 1976 and from 1988 to present, suggesting the propensity to undergo long periods with reduced flows. In turn, the PC2 pattern is predominantly positive from 1948 to the present, revealing a tendency to more frequent peak flows in late spring since the mid-20th century. Above-average streamflows related to abundant snowfalls in the CA are associated with northward shifts in stormtracks that are remotely induced by above-average sea surface temperatures in the equatorial Pacific. On the other hand, earlier streamflow peaks in November-December are concurrent with above-average temperatures across the Atuel basin induced by enhanced meridional circulation from the Tropics due to the strengthening of the South Atlantic anticyclone. These circulation anomalies are linked to the persistent positive phase of the Southern Annular Mode during the last decades. Additionally, years with reduced streamflows in January, and proportionally larger flow contributions in November-December, are associated with anomalous air cooling at high levels induced by low pressure centres over the region as part of a quasi-zonal stationary Rossby wave train that extends from Australia to the South American–South Atlantic sector.
Fil: Araneo, Diego Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Materia
Río Atuel
Streamflows Annual Cycle
Tropospheric Circulation
Principal Components Analysis
El Niño
Southern Annular Mode
Rossby Waves
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32018

id CONICETDig_bd34bacd14efe1162b5f815f2be8ac1a
oai_identifier_str oai:ri.conicet.gov.ar:11336/32018
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulationAraneo, Diego ChristianVillalba, RicardoRío AtuelStreamflows Annual CycleTropospheric CirculationPrincipal Components AnalysisEl NiñoSouthern Annular ModeRossby Waveshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Climate-induced changes in the annual regime of snow-fed rivers have serious implications for water resource management. In the Central Andes (CA, 28°–36°S) of Argentina–Chile, the snow accumulated in high-elevation mountains in winter is the dominant component of streamflows during the spring–summer melting season. Although topography introduces complexity in snowpack responses to the annual temperature cycle, streamflow series over a century in length make the CA particularly suitable for identification of long-term hydrological changes. Principal component (PC) analysis of Río Atuel annual hydrographs from 1906 to 2012 discriminates between precipitation- and temperature-related components associated with variations in snow accumulation (49% of variance) and advances/delays of the streamflow annual peak (21% of variance), respectively. The temporal evolution of PC1 loadings reveals a predominant negative period from 1917 to 1976 and from 1988 to present, suggesting the propensity to undergo long periods with reduced flows. In turn, the PC2 pattern is predominantly positive from 1948 to the present, revealing a tendency to more frequent peak flows in late spring since the mid-20th century. Above-average streamflows related to abundant snowfalls in the CA are associated with northward shifts in stormtracks that are remotely induced by above-average sea surface temperatures in the equatorial Pacific. On the other hand, earlier streamflow peaks in November-December are concurrent with above-average temperatures across the Atuel basin induced by enhanced meridional circulation from the Tropics due to the strengthening of the South Atlantic anticyclone. These circulation anomalies are linked to the persistent positive phase of the Southern Annular Mode during the last decades. Additionally, years with reduced streamflows in January, and proportionally larger flow contributions in November-December, are associated with anomalous air cooling at high levels induced by low pressure centres over the region as part of a quasi-zonal stationary Rossby wave train that extends from Australia to the South American–South Atlantic sector.Fil: Araneo, Diego Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaWiley2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32018Villalba, Ricardo; Araneo, Diego Christian; Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation; Wiley; International Journal of Climatology; 35; 10; 11-2014; 2948-29670899-8418CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/joc.4185info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/joc.4185/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:36:22Zoai:ri.conicet.gov.ar:11336/32018instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:36:22.805CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
title Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
spellingShingle Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
Araneo, Diego Christian
Río Atuel
Streamflows Annual Cycle
Tropospheric Circulation
Principal Components Analysis
El Niño
Southern Annular Mode
Rossby Waves
title_short Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
title_full Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
title_fullStr Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
title_full_unstemmed Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
title_sort Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation
dc.creator.none.fl_str_mv Araneo, Diego Christian
Villalba, Ricardo
author Araneo, Diego Christian
author_facet Araneo, Diego Christian
Villalba, Ricardo
author_role author
author2 Villalba, Ricardo
author2_role author
dc.subject.none.fl_str_mv Río Atuel
Streamflows Annual Cycle
Tropospheric Circulation
Principal Components Analysis
El Niño
Southern Annular Mode
Rossby Waves
topic Río Atuel
Streamflows Annual Cycle
Tropospheric Circulation
Principal Components Analysis
El Niño
Southern Annular Mode
Rossby Waves
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Climate-induced changes in the annual regime of snow-fed rivers have serious implications for water resource management. In the Central Andes (CA, 28°–36°S) of Argentina–Chile, the snow accumulated in high-elevation mountains in winter is the dominant component of streamflows during the spring–summer melting season. Although topography introduces complexity in snowpack responses to the annual temperature cycle, streamflow series over a century in length make the CA particularly suitable for identification of long-term hydrological changes. Principal component (PC) analysis of Río Atuel annual hydrographs from 1906 to 2012 discriminates between precipitation- and temperature-related components associated with variations in snow accumulation (49% of variance) and advances/delays of the streamflow annual peak (21% of variance), respectively. The temporal evolution of PC1 loadings reveals a predominant negative period from 1917 to 1976 and from 1988 to present, suggesting the propensity to undergo long periods with reduced flows. In turn, the PC2 pattern is predominantly positive from 1948 to the present, revealing a tendency to more frequent peak flows in late spring since the mid-20th century. Above-average streamflows related to abundant snowfalls in the CA are associated with northward shifts in stormtracks that are remotely induced by above-average sea surface temperatures in the equatorial Pacific. On the other hand, earlier streamflow peaks in November-December are concurrent with above-average temperatures across the Atuel basin induced by enhanced meridional circulation from the Tropics due to the strengthening of the South Atlantic anticyclone. These circulation anomalies are linked to the persistent positive phase of the Southern Annular Mode during the last decades. Additionally, years with reduced streamflows in January, and proportionally larger flow contributions in November-December, are associated with anomalous air cooling at high levels induced by low pressure centres over the region as part of a quasi-zonal stationary Rossby wave train that extends from Australia to the South American–South Atlantic sector.
Fil: Araneo, Diego Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
description Climate-induced changes in the annual regime of snow-fed rivers have serious implications for water resource management. In the Central Andes (CA, 28°–36°S) of Argentina–Chile, the snow accumulated in high-elevation mountains in winter is the dominant component of streamflows during the spring–summer melting season. Although topography introduces complexity in snowpack responses to the annual temperature cycle, streamflow series over a century in length make the CA particularly suitable for identification of long-term hydrological changes. Principal component (PC) analysis of Río Atuel annual hydrographs from 1906 to 2012 discriminates between precipitation- and temperature-related components associated with variations in snow accumulation (49% of variance) and advances/delays of the streamflow annual peak (21% of variance), respectively. The temporal evolution of PC1 loadings reveals a predominant negative period from 1917 to 1976 and from 1988 to present, suggesting the propensity to undergo long periods with reduced flows. In turn, the PC2 pattern is predominantly positive from 1948 to the present, revealing a tendency to more frequent peak flows in late spring since the mid-20th century. Above-average streamflows related to abundant snowfalls in the CA are associated with northward shifts in stormtracks that are remotely induced by above-average sea surface temperatures in the equatorial Pacific. On the other hand, earlier streamflow peaks in November-December are concurrent with above-average temperatures across the Atuel basin induced by enhanced meridional circulation from the Tropics due to the strengthening of the South Atlantic anticyclone. These circulation anomalies are linked to the persistent positive phase of the Southern Annular Mode during the last decades. Additionally, years with reduced streamflows in January, and proportionally larger flow contributions in November-December, are associated with anomalous air cooling at high levels induced by low pressure centres over the region as part of a quasi-zonal stationary Rossby wave train that extends from Australia to the South American–South Atlantic sector.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32018
Villalba, Ricardo; Araneo, Diego Christian; Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation; Wiley; International Journal of Climatology; 35; 10; 11-2014; 2948-2967
0899-8418
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32018
identifier_str_mv Villalba, Ricardo; Araneo, Diego Christian; Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation; Wiley; International Journal of Climatology; 35; 10; 11-2014; 2948-2967
0899-8418
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/joc.4185
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/joc.4185/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597252779540480
score 13.25334