Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks
- Autores
- Sosa Haudet, Santiago; Rodríguez, Martín Alejandro; Carranza, Ricardo Mario
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nickel base alloys are considered among candidate materials for engineered barriers of nuclear repositories. The localized corrosion resistance is a determining factor in materials selection for this application. This work compares the crevice corrosion resistance of several commercial nickel base alloys using artificial neural networks. The crevice corrosion repassivation potential of the tested alloys was determined by the potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) method. The testing temperature was 60ªC and the chloride concentrations used were 0,1M, 1M and 10M. The results indicate that the repassivation potential increases linearly with the PREN (Pitting Resistant Equivalent Number) at high chloride concentrations. We also found a linear relationship between the repassivation potential and the logarithm of the concentration of chloride. Analysis from artificial neural networks presents distinctive patterns between the mayor alloying components and the chloride concentration and the repassivation potential. Predictions from artificial neural networks fit with successive tested commercial nickel alloys.
Fil: Sosa Haudet, Santiago. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Rodríguez, Martín Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carranza, Ricardo Mario. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina - Materia
-
ARTIFICIAL NEURAL NETWORKS
CREVICE CORROSION
REPASSIVATION POTENTIAL
CHLORIDES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111954
Ver los metadatos del registro completo
id |
CONICETDig_bc566e0ce28e90fd64e244642f91722b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111954 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural NetworksSosa Haudet, SantiagoRodríguez, Martín AlejandroCarranza, Ricardo MarioARTIFICIAL NEURAL NETWORKSCREVICE CORROSIONREPASSIVATION POTENTIALCHLORIDEShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Nickel base alloys are considered among candidate materials for engineered barriers of nuclear repositories. The localized corrosion resistance is a determining factor in materials selection for this application. This work compares the crevice corrosion resistance of several commercial nickel base alloys using artificial neural networks. The crevice corrosion repassivation potential of the tested alloys was determined by the potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) method. The testing temperature was 60ªC and the chloride concentrations used were 0,1M, 1M and 10M. The results indicate that the repassivation potential increases linearly with the PREN (Pitting Resistant Equivalent Number) at high chloride concentrations. We also found a linear relationship between the repassivation potential and the logarithm of the concentration of chloride. Analysis from artificial neural networks presents distinctive patterns between the mayor alloying components and the chloride concentration and the repassivation potential. Predictions from artificial neural networks fit with successive tested commercial nickel alloys.Fil: Sosa Haudet, Santiago. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Rodríguez, Martín Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carranza, Ricardo Mario. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaElsevier2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111954Sosa Haudet, Santiago; Rodríguez, Martín Alejandro; Carranza, Ricardo Mario; Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks; Elsevier; Procedia Materials Science; 8; 6-2015; 21-282211-8128CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2211812815000450info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mspro.2015.04.044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:17Zoai:ri.conicet.gov.ar:11336/111954instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:17.441CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks |
title |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks |
spellingShingle |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks Sosa Haudet, Santiago ARTIFICIAL NEURAL NETWORKS CREVICE CORROSION REPASSIVATION POTENTIAL CHLORIDES |
title_short |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks |
title_full |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks |
title_fullStr |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks |
title_full_unstemmed |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks |
title_sort |
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks |
dc.creator.none.fl_str_mv |
Sosa Haudet, Santiago Rodríguez, Martín Alejandro Carranza, Ricardo Mario |
author |
Sosa Haudet, Santiago |
author_facet |
Sosa Haudet, Santiago Rodríguez, Martín Alejandro Carranza, Ricardo Mario |
author_role |
author |
author2 |
Rodríguez, Martín Alejandro Carranza, Ricardo Mario |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORKS CREVICE CORROSION REPASSIVATION POTENTIAL CHLORIDES |
topic |
ARTIFICIAL NEURAL NETWORKS CREVICE CORROSION REPASSIVATION POTENTIAL CHLORIDES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nickel base alloys are considered among candidate materials for engineered barriers of nuclear repositories. The localized corrosion resistance is a determining factor in materials selection for this application. This work compares the crevice corrosion resistance of several commercial nickel base alloys using artificial neural networks. The crevice corrosion repassivation potential of the tested alloys was determined by the potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) method. The testing temperature was 60ªC and the chloride concentrations used were 0,1M, 1M and 10M. The results indicate that the repassivation potential increases linearly with the PREN (Pitting Resistant Equivalent Number) at high chloride concentrations. We also found a linear relationship between the repassivation potential and the logarithm of the concentration of chloride. Analysis from artificial neural networks presents distinctive patterns between the mayor alloying components and the chloride concentration and the repassivation potential. Predictions from artificial neural networks fit with successive tested commercial nickel alloys. Fil: Sosa Haudet, Santiago. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina Fil: Rodríguez, Martín Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carranza, Ricardo Mario. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina |
description |
Nickel base alloys are considered among candidate materials for engineered barriers of nuclear repositories. The localized corrosion resistance is a determining factor in materials selection for this application. This work compares the crevice corrosion resistance of several commercial nickel base alloys using artificial neural networks. The crevice corrosion repassivation potential of the tested alloys was determined by the potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) method. The testing temperature was 60ªC and the chloride concentrations used were 0,1M, 1M and 10M. The results indicate that the repassivation potential increases linearly with the PREN (Pitting Resistant Equivalent Number) at high chloride concentrations. We also found a linear relationship between the repassivation potential and the logarithm of the concentration of chloride. Analysis from artificial neural networks presents distinctive patterns between the mayor alloying components and the chloride concentration and the repassivation potential. Predictions from artificial neural networks fit with successive tested commercial nickel alloys. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111954 Sosa Haudet, Santiago; Rodríguez, Martín Alejandro; Carranza, Ricardo Mario; Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks; Elsevier; Procedia Materials Science; 8; 6-2015; 21-28 2211-8128 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111954 |
identifier_str_mv |
Sosa Haudet, Santiago; Rodríguez, Martín Alejandro; Carranza, Ricardo Mario; Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks; Elsevier; Procedia Materials Science; 8; 6-2015; 21-28 2211-8128 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2211812815000450 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mspro.2015.04.044 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269572771610624 |
score |
13.13397 |