Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
- Autores
- Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; Bekeris, Victoria Isabel; Prieto, J. L.; Schuller, Ivan K.; Vicent, J. L.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.
Fil: Gomez, A. Universidad Complutense de Madrid; España
Fil: del Valle, J. Universidad Complutense de Madrid; España
Fil: Gonzalez, E. M.. Universidad Complutense de Madrid; España. IMDEA. Madrid; España
Fil: Chiliotte, Claudio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Carreira, Santiago José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Bekeris, Victoria Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Prieto, J. L.. Universidad Politécnica de Madrid; España
Fil: Schuller, Ivan K.. University of California at San Diego; Estados Unidos
Fil: Vicent, J. L.. IMDEA. Madrid; España. Universidad Complutense de Madrid; España - Materia
-
Vortex Pinning
Nanoestructures
Little–Parks Effect - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/36036
Ver los metadatos del registro completo
id |
CONICETDig_ba4117225559e3ea3fe57eb437f3eeb7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/36036 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnetsGomez, Adel Valle, JGonzalez, E. M.Chiliotte, Claudio EzequielCarreira, Santiago JoséBekeris, Victoria IsabelPrieto, J. L.Schuller, Ivan K.Vicent, J. L.Vortex PinningNanoestructuresLittle–Parks Effecthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.Fil: Gomez, A. Universidad Complutense de Madrid; EspañaFil: del Valle, J. Universidad Complutense de Madrid; EspañaFil: Gonzalez, E. M.. Universidad Complutense de Madrid; España. IMDEA. Madrid; EspañaFil: Chiliotte, Claudio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Carreira, Santiago José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Bekeris, Victoria Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Prieto, J. L.. Universidad Politécnica de Madrid; EspañaFil: Schuller, Ivan K.. University of California at San Diego; Estados UnidosFil: Vicent, J. L.. IMDEA. Madrid; España. Universidad Complutense de Madrid; EspañaIOP Publishing2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36036Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; et al.; Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets; IOP Publishing; Superconductor Science And Technology; 27; 8-2014; 65017-650220953-2048CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0953-2048/27/6/065017info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-2048/27/6/065017/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:27Zoai:ri.conicet.gov.ar:11336/36036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:27.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
spellingShingle |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets Gomez, A Vortex Pinning Nanoestructures Little–Parks Effect |
title_short |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_full |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_fullStr |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_full_unstemmed |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_sort |
Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
dc.creator.none.fl_str_mv |
Gomez, A del Valle, J Gonzalez, E. M. Chiliotte, Claudio Ezequiel Carreira, Santiago José Bekeris, Victoria Isabel Prieto, J. L. Schuller, Ivan K. Vicent, J. L. |
author |
Gomez, A |
author_facet |
Gomez, A del Valle, J Gonzalez, E. M. Chiliotte, Claudio Ezequiel Carreira, Santiago José Bekeris, Victoria Isabel Prieto, J. L. Schuller, Ivan K. Vicent, J. L. |
author_role |
author |
author2 |
del Valle, J Gonzalez, E. M. Chiliotte, Claudio Ezequiel Carreira, Santiago José Bekeris, Victoria Isabel Prieto, J. L. Schuller, Ivan K. Vicent, J. L. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Vortex Pinning Nanoestructures Little–Parks Effect |
topic |
Vortex Pinning Nanoestructures Little–Parks Effect |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. Fil: Gomez, A. Universidad Complutense de Madrid; España Fil: del Valle, J. Universidad Complutense de Madrid; España Fil: Gonzalez, E. M.. Universidad Complutense de Madrid; España. IMDEA. Madrid; España Fil: Chiliotte, Claudio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Carreira, Santiago José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Bekeris, Victoria Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Prieto, J. L.. Universidad Politécnica de Madrid; España Fil: Schuller, Ivan K.. University of California at San Diego; Estados Unidos Fil: Vicent, J. L.. IMDEA. Madrid; España. Universidad Complutense de Madrid; España |
description |
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/36036 Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; et al.; Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets; IOP Publishing; Superconductor Science And Technology; 27; 8-2014; 65017-65022 0953-2048 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/36036 |
identifier_str_mv |
Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; et al.; Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets; IOP Publishing; Superconductor Science And Technology; 27; 8-2014; 65017-65022 0953-2048 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-2048/27/6/065017 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-2048/27/6/065017/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268860316647424 |
score |
13.13397 |