Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets

Autores
Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; Bekeris, Victoria Isabel; Prieto, J. L.; Schuller, Ivan K.; Vicent, J. L.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.
Fil: Gomez, A. Universidad Complutense de Madrid; España
Fil: del Valle, J. Universidad Complutense de Madrid; España
Fil: Gonzalez, E. M.. Universidad Complutense de Madrid; España. IMDEA. Madrid; España
Fil: Chiliotte, Claudio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Carreira, Santiago José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Bekeris, Victoria Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Prieto, J. L.. Universidad Politécnica de Madrid; España
Fil: Schuller, Ivan K.. University of California at San Diego; Estados Unidos
Fil: Vicent, J. L.. IMDEA. Madrid; España. Universidad Complutense de Madrid; España
Materia
Vortex Pinning
Nanoestructures
Little–Parks Effect
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/36036

id CONICETDig_ba4117225559e3ea3fe57eb437f3eeb7
oai_identifier_str oai:ri.conicet.gov.ar:11336/36036
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnetsGomez, Adel Valle, JGonzalez, E. M.Chiliotte, Claudio EzequielCarreira, Santiago JoséBekeris, Victoria IsabelPrieto, J. L.Schuller, Ivan K.Vicent, J. L.Vortex PinningNanoestructuresLittle–Parks Effecthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.Fil: Gomez, A. Universidad Complutense de Madrid; EspañaFil: del Valle, J. Universidad Complutense de Madrid; EspañaFil: Gonzalez, E. M.. Universidad Complutense de Madrid; España. IMDEA. Madrid; EspañaFil: Chiliotte, Claudio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Carreira, Santiago José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Bekeris, Victoria Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Prieto, J. L.. Universidad Politécnica de Madrid; EspañaFil: Schuller, Ivan K.. University of California at San Diego; Estados UnidosFil: Vicent, J. L.. IMDEA. Madrid; España. Universidad Complutense de Madrid; EspañaIOP Publishing2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36036Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; et al.; Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets; IOP Publishing; Superconductor Science And Technology; 27; 8-2014; 65017-650220953-2048CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0953-2048/27/6/065017info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-2048/27/6/065017/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:27Zoai:ri.conicet.gov.ar:11336/36036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:27.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
title Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
spellingShingle Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
Gomez, A
Vortex Pinning
Nanoestructures
Little–Parks Effect
title_short Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
title_full Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
title_fullStr Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
title_full_unstemmed Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
title_sort Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
dc.creator.none.fl_str_mv Gomez, A
del Valle, J
Gonzalez, E. M.
Chiliotte, Claudio Ezequiel
Carreira, Santiago José
Bekeris, Victoria Isabel
Prieto, J. L.
Schuller, Ivan K.
Vicent, J. L.
author Gomez, A
author_facet Gomez, A
del Valle, J
Gonzalez, E. M.
Chiliotte, Claudio Ezequiel
Carreira, Santiago José
Bekeris, Victoria Isabel
Prieto, J. L.
Schuller, Ivan K.
Vicent, J. L.
author_role author
author2 del Valle, J
Gonzalez, E. M.
Chiliotte, Claudio Ezequiel
Carreira, Santiago José
Bekeris, Victoria Isabel
Prieto, J. L.
Schuller, Ivan K.
Vicent, J. L.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Vortex Pinning
Nanoestructures
Little–Parks Effect
topic Vortex Pinning
Nanoestructures
Little–Parks Effect
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.
Fil: Gomez, A. Universidad Complutense de Madrid; España
Fil: del Valle, J. Universidad Complutense de Madrid; España
Fil: Gonzalez, E. M.. Universidad Complutense de Madrid; España. IMDEA. Madrid; España
Fil: Chiliotte, Claudio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Carreira, Santiago José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Bekeris, Victoria Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Prieto, J. L.. Universidad Politécnica de Madrid; España
Fil: Schuller, Ivan K.. University of California at San Diego; Estados Unidos
Fil: Vicent, J. L.. IMDEA. Madrid; España. Universidad Complutense de Madrid; España
description Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/36036
Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; et al.; Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets; IOP Publishing; Superconductor Science And Technology; 27; 8-2014; 65017-65022
0953-2048
CONICET Digital
CONICET
url http://hdl.handle.net/11336/36036
identifier_str_mv Gomez, A; del Valle, J; Gonzalez, E. M.; Chiliotte, Claudio Ezequiel; Carreira, Santiago José; et al.; Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets; IOP Publishing; Superconductor Science And Technology; 27; 8-2014; 65017-65022
0953-2048
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-2048/27/6/065017
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-2048/27/6/065017/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268860316647424
score 13.13397