Permafrost model for the Argentinian Andes - Results and climatic scenarios

Autores
Tapia Baldis, Carla Cintia
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
conjunto de datos
Estado
Descripción
Supplementary information to the following publication: Tapia Baldis C, Trombotto Liaudat D. 2020. Permafrost debris-model in Central Andes of Argentina (28°-33° S). Cuadernos de Investigación Geográfica 46, http://doi.org/10.18172/cig.3802 ------------------------------------------------------------------------------------------------------------------------- To predict regional-scale spatial patterns of permafrost occurrence, especially over remote environments with limited data, empiric-statistical models are widely used. This kind of approach correlates permafrost occurrence with topo-climatic factors (altitude, geographic position, slope, aspect, air temperature, ground temperature, solar radiation, etc.) easily available, in some cases. Different combinations of empiric-statistical models were tested to evaluate the permafrost spatial distribution in the study area. The study area (28° to 33°S and 70°30’ to 69°W) comprises the middle portion of the South American (Argentinian side) Central Andes (17°30’ to 35°S), named Dry Andes. The landscape is expressed as mountain ranges and valleys with 50% of the terrain surface above 3000 m a.s.l. The highest elevations are represented by mountain peaks such us Mercedario (6850 m a.s.l.) or La Ramada (6400 m a.s.l.). The Dry Andes could be further separated into Desert Andes (17°30’ to 31°S) and Central Andes (31° to 35°S), according to precipitation rates and landscape geomorphological characteristics. Models were trained in a calibration area to evaluate the correlation between geomorphological permafrost indicators (named explanatory variable) and the topoclimatic parameters (predictive variable). A logistic regression model with a logit link function was chosen as a mathematical approach. Data for model calibration was obtained from the Bramadero river basin, located at 31°50’ S and 70°00’ W in the Central Andes. From a geomorphological point of view, the landscape of the Dry Andes is characterized by the interdigitation of glacial, periglacial, alluvial, fluvial, and gravitational processes. The Bramadero river basin was largely glaciated during the LGM, even today it is possible to recognize erosive forms and glacial deposits all over the main valley and subordinated creeks. Even though Quaternary glacial stages modeled the landscape; periglacial features prevail today. Currently, periglacial processes are active in elevations exceeding 2700 m a.s.l. (lowest limit of seasonal freezing), however, a wide variety of periglacial deposits and permafrost indicating cryoforms occur between 3400 and >4500 m a.s.l. (permafrost periglacial belt). The complete geomorphological characterization of the Bramadero river basin and the geomorphometric data extracted from every kind of landform were used to set up the permafrost predictive categories. The first predictive category (presence) includes geoforms that indicate current permafrost, such as; active rock glaciers, inactive rock glaciers, protalus lobes, cryoplanation surfaces, and perennial snow patches. The second category (absence) includes geoforms without current permafrost (relict or fossil rock glaciers, bedrock outcrops, glacial abrasion surfaces, debris/mud flows, and Andean wetlands/peatlands types). It also includes geoforms where the presence of permafrost could not be certainly assessed such us: frozen and unfrozen talus slopes, glaciers and covered glaciers, moraines and morainic complexes, debris/snow avalanches, rock avalanches, and rock slides. The following link can accede data from the calibration area: Tapia Baldis, Carla. (2018). Permafrost model for the Argentinian Andes - Calibration data set [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7229569The following link can accede data results to the entire area (28°-33°S and 71° to 69°W)
Fil: Tapia Baldis, Carla Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/200477

id CONICETDig_ba3aca584762189add7cf1c478e4cf3a
oai_identifier_str oai:ri.conicet.gov.ar:11336/200477
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Permafrost model for the Argentinian Andes - Results and climatic scenariosTapia Baldis, Carla Cintiahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Supplementary information to the following publication: Tapia Baldis C, Trombotto Liaudat D. 2020. Permafrost debris-model in Central Andes of Argentina (28°-33° S). Cuadernos de Investigación Geográfica 46, http://doi.org/10.18172/cig.3802 ------------------------------------------------------------------------------------------------------------------------- To predict regional-scale spatial patterns of permafrost occurrence, especially over remote environments with limited data, empiric-statistical models are widely used. This kind of approach correlates permafrost occurrence with topo-climatic factors (altitude, geographic position, slope, aspect, air temperature, ground temperature, solar radiation, etc.) easily available, in some cases. Different combinations of empiric-statistical models were tested to evaluate the permafrost spatial distribution in the study area. The study area (28° to 33°S and 70°30’ to 69°W) comprises the middle portion of the South American (Argentinian side) Central Andes (17°30’ to 35°S), named Dry Andes. The landscape is expressed as mountain ranges and valleys with 50% of the terrain surface above 3000 m a.s.l. The highest elevations are represented by mountain peaks such us Mercedario (6850 m a.s.l.) or La Ramada (6400 m a.s.l.). The Dry Andes could be further separated into Desert Andes (17°30’ to 31°S) and Central Andes (31° to 35°S), according to precipitation rates and landscape geomorphological characteristics. Models were trained in a calibration area to evaluate the correlation between geomorphological permafrost indicators (named explanatory variable) and the topoclimatic parameters (predictive variable). A logistic regression model with a logit link function was chosen as a mathematical approach. Data for model calibration was obtained from the Bramadero river basin, located at 31°50’ S and 70°00’ W in the Central Andes. From a geomorphological point of view, the landscape of the Dry Andes is characterized by the interdigitation of glacial, periglacial, alluvial, fluvial, and gravitational processes. The Bramadero river basin was largely glaciated during the LGM, even today it is possible to recognize erosive forms and glacial deposits all over the main valley and subordinated creeks. Even though Quaternary glacial stages modeled the landscape; periglacial features prevail today. Currently, periglacial processes are active in elevations exceeding 2700 m a.s.l. (lowest limit of seasonal freezing), however, a wide variety of periglacial deposits and permafrost indicating cryoforms occur between 3400 and >4500 m a.s.l. (permafrost periglacial belt). The complete geomorphological characterization of the Bramadero river basin and the geomorphometric data extracted from every kind of landform were used to set up the permafrost predictive categories. The first predictive category (presence) includes geoforms that indicate current permafrost, such as; active rock glaciers, inactive rock glaciers, protalus lobes, cryoplanation surfaces, and perennial snow patches. The second category (absence) includes geoforms without current permafrost (relict or fossil rock glaciers, bedrock outcrops, glacial abrasion surfaces, debris/mud flows, and Andean wetlands/peatlands types). It also includes geoforms where the presence of permafrost could not be certainly assessed such us: frozen and unfrozen talus slopes, glaciers and covered glaciers, moraines and morainic complexes, debris/snow avalanches, rock avalanches, and rock slides. The following link can accede data from the calibration area: Tapia Baldis, Carla. (2018). Permafrost model for the Argentinian Andes - Calibration data set [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7229569The following link can accede data results to the entire area (28°-33°S and 71° to 69°W)Fil: Tapia Baldis, Carla Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina2023info:ar-repo/semantics/conjuntoDeDatosv1.0info:eu-repo/semantics/dataSetapplication/octet-streamhttp://hdl.handle.net/11336/200477Tapia Baldis, Carla Cintia; (2023): Permafrost model for the Argentinian Andes - Results and climatic scenarios. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/200477CONICET DigitalCONICETspainfo:eu-repo/grantAgreement/Consejo Nacional de Investigaciones Científicas y Técnicas/PIP 12222015-01000913info:eu-repo/grantAgreement//PIP 12222015-01000913info:eu-repo/grantAgreement//PIP 12222015-01000913info:eu-repo/grantAgreement//PIP 12222015-01000913info:eu-repo/grantAgreement//PIP 12222015-01000913info:eu-repo/grantAgreement//PIP 12222015-01000913info:eu-repo/grantAgreement//PIP 12222015-01000913info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:06:20Zoai:ri.conicet.gov.ar:11336/200477instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:06:20.664CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Permafrost model for the Argentinian Andes - Results and climatic scenarios
title Permafrost model for the Argentinian Andes - Results and climatic scenarios
spellingShingle Permafrost model for the Argentinian Andes - Results and climatic scenarios
Tapia Baldis, Carla Cintia
title_short Permafrost model for the Argentinian Andes - Results and climatic scenarios
title_full Permafrost model for the Argentinian Andes - Results and climatic scenarios
title_fullStr Permafrost model for the Argentinian Andes - Results and climatic scenarios
title_full_unstemmed Permafrost model for the Argentinian Andes - Results and climatic scenarios
title_sort Permafrost model for the Argentinian Andes - Results and climatic scenarios
dc.creator.none.fl_str_mv Tapia Baldis, Carla Cintia
author Tapia Baldis, Carla Cintia
author_facet Tapia Baldis, Carla Cintia
author_role author
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Supplementary information to the following publication: Tapia Baldis C, Trombotto Liaudat D. 2020. Permafrost debris-model in Central Andes of Argentina (28°-33° S). Cuadernos de Investigación Geográfica 46, http://doi.org/10.18172/cig.3802 ------------------------------------------------------------------------------------------------------------------------- To predict regional-scale spatial patterns of permafrost occurrence, especially over remote environments with limited data, empiric-statistical models are widely used. This kind of approach correlates permafrost occurrence with topo-climatic factors (altitude, geographic position, slope, aspect, air temperature, ground temperature, solar radiation, etc.) easily available, in some cases. Different combinations of empiric-statistical models were tested to evaluate the permafrost spatial distribution in the study area. The study area (28° to 33°S and 70°30’ to 69°W) comprises the middle portion of the South American (Argentinian side) Central Andes (17°30’ to 35°S), named Dry Andes. The landscape is expressed as mountain ranges and valleys with 50% of the terrain surface above 3000 m a.s.l. The highest elevations are represented by mountain peaks such us Mercedario (6850 m a.s.l.) or La Ramada (6400 m a.s.l.). The Dry Andes could be further separated into Desert Andes (17°30’ to 31°S) and Central Andes (31° to 35°S), according to precipitation rates and landscape geomorphological characteristics. Models were trained in a calibration area to evaluate the correlation between geomorphological permafrost indicators (named explanatory variable) and the topoclimatic parameters (predictive variable). A logistic regression model with a logit link function was chosen as a mathematical approach. Data for model calibration was obtained from the Bramadero river basin, located at 31°50’ S and 70°00’ W in the Central Andes. From a geomorphological point of view, the landscape of the Dry Andes is characterized by the interdigitation of glacial, periglacial, alluvial, fluvial, and gravitational processes. The Bramadero river basin was largely glaciated during the LGM, even today it is possible to recognize erosive forms and glacial deposits all over the main valley and subordinated creeks. Even though Quaternary glacial stages modeled the landscape; periglacial features prevail today. Currently, periglacial processes are active in elevations exceeding 2700 m a.s.l. (lowest limit of seasonal freezing), however, a wide variety of periglacial deposits and permafrost indicating cryoforms occur between 3400 and >4500 m a.s.l. (permafrost periglacial belt). The complete geomorphological characterization of the Bramadero river basin and the geomorphometric data extracted from every kind of landform were used to set up the permafrost predictive categories. The first predictive category (presence) includes geoforms that indicate current permafrost, such as; active rock glaciers, inactive rock glaciers, protalus lobes, cryoplanation surfaces, and perennial snow patches. The second category (absence) includes geoforms without current permafrost (relict or fossil rock glaciers, bedrock outcrops, glacial abrasion surfaces, debris/mud flows, and Andean wetlands/peatlands types). It also includes geoforms where the presence of permafrost could not be certainly assessed such us: frozen and unfrozen talus slopes, glaciers and covered glaciers, moraines and morainic complexes, debris/snow avalanches, rock avalanches, and rock slides. The following link can accede data from the calibration area: Tapia Baldis, Carla. (2018). Permafrost model for the Argentinian Andes - Calibration data set [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7229569The following link can accede data results to the entire area (28°-33°S and 71° to 69°W)
Fil: Tapia Baldis, Carla Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
description Supplementary information to the following publication: Tapia Baldis C, Trombotto Liaudat D. 2020. Permafrost debris-model in Central Andes of Argentina (28°-33° S). Cuadernos de Investigación Geográfica 46, http://doi.org/10.18172/cig.3802 ------------------------------------------------------------------------------------------------------------------------- To predict regional-scale spatial patterns of permafrost occurrence, especially over remote environments with limited data, empiric-statistical models are widely used. This kind of approach correlates permafrost occurrence with topo-climatic factors (altitude, geographic position, slope, aspect, air temperature, ground temperature, solar radiation, etc.) easily available, in some cases. Different combinations of empiric-statistical models were tested to evaluate the permafrost spatial distribution in the study area. The study area (28° to 33°S and 70°30’ to 69°W) comprises the middle portion of the South American (Argentinian side) Central Andes (17°30’ to 35°S), named Dry Andes. The landscape is expressed as mountain ranges and valleys with 50% of the terrain surface above 3000 m a.s.l. The highest elevations are represented by mountain peaks such us Mercedario (6850 m a.s.l.) or La Ramada (6400 m a.s.l.). The Dry Andes could be further separated into Desert Andes (17°30’ to 31°S) and Central Andes (31° to 35°S), according to precipitation rates and landscape geomorphological characteristics. Models were trained in a calibration area to evaluate the correlation between geomorphological permafrost indicators (named explanatory variable) and the topoclimatic parameters (predictive variable). A logistic regression model with a logit link function was chosen as a mathematical approach. Data for model calibration was obtained from the Bramadero river basin, located at 31°50’ S and 70°00’ W in the Central Andes. From a geomorphological point of view, the landscape of the Dry Andes is characterized by the interdigitation of glacial, periglacial, alluvial, fluvial, and gravitational processes. The Bramadero river basin was largely glaciated during the LGM, even today it is possible to recognize erosive forms and glacial deposits all over the main valley and subordinated creeks. Even though Quaternary glacial stages modeled the landscape; periglacial features prevail today. Currently, periglacial processes are active in elevations exceeding 2700 m a.s.l. (lowest limit of seasonal freezing), however, a wide variety of periglacial deposits and permafrost indicating cryoforms occur between 3400 and >4500 m a.s.l. (permafrost periglacial belt). The complete geomorphological characterization of the Bramadero river basin and the geomorphometric data extracted from every kind of landform were used to set up the permafrost predictive categories. The first predictive category (presence) includes geoforms that indicate current permafrost, such as; active rock glaciers, inactive rock glaciers, protalus lobes, cryoplanation surfaces, and perennial snow patches. The second category (absence) includes geoforms without current permafrost (relict or fossil rock glaciers, bedrock outcrops, glacial abrasion surfaces, debris/mud flows, and Andean wetlands/peatlands types). It also includes geoforms where the presence of permafrost could not be certainly assessed such us: frozen and unfrozen talus slopes, glaciers and covered glaciers, moraines and morainic complexes, debris/snow avalanches, rock avalanches, and rock slides. The following link can accede data from the calibration area: Tapia Baldis, Carla. (2018). Permafrost model for the Argentinian Andes - Calibration data set [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7229569The following link can accede data results to the entire area (28°-33°S and 71° to 69°W)
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:ar-repo/semantics/conjuntoDeDatos
v1.0
info:eu-repo/semantics/dataSet
format dataSet
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/200477
Tapia Baldis, Carla Cintia; (2023): Permafrost model for the Argentinian Andes - Results and climatic scenarios. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/200477
CONICET Digital
CONICET
url http://hdl.handle.net/11336/200477
identifier_str_mv Tapia Baldis, Carla Cintia; (2023): Permafrost model for the Argentinian Andes - Results and climatic scenarios. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/200477
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/grantAgreement/Consejo Nacional de Investigaciones Científicas y Técnicas/PIP 12222015-01000913
info:eu-repo/grantAgreement//PIP 12222015-01000913
info:eu-repo/grantAgreement//PIP 12222015-01000913
info:eu-repo/grantAgreement//PIP 12222015-01000913
info:eu-repo/grantAgreement//PIP 12222015-01000913
info:eu-repo/grantAgreement//PIP 12222015-01000913
info:eu-repo/grantAgreement//PIP 12222015-01000913
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/octet-stream
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849873461053227008
score 13.011256