Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications

Autores
Scasso, Roberto Adrian; Capelli, Ignacio Andrés; Cravero, Maria Fernanda; Kietzmann, Diego Alejandro
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The Upper Jurassic of two basins in southern South America and the Antarctic Peninsula is characterized by blackshale/mudstone-dominated marine successions with interbedded tuff beds milimetric to decimetric thick. Anoxicenvironment precluded bioturbation and sediment mixing, and favoured organic matter preservation (TOC 2-8%).Some of these successions may form unconventional oil reserves, such as the VacaMuerta Formation, and thereforethe study of clay mineralsis critical for the fracking process. As the clay mineral association developed ontuffs is totally diagenetic it may be regarded as a good tracer for the diagenetic grade. It is also remarkably differentfrom the clay mineral association in the background sediments.Most tuff beds in our case studies (the Ameghino Formation in the Larsen Basin, northeastern Antarctic Peninsulaand the VacaMuerta Formation in the Neuquén Basin, western Argentina) are massively replaced by carbonate,chlorite andillite-smectite interlayers (I/S). In the localities selected for this study both units underwent deep burialin the context of high geothermal gradient basins. Chlorite is more abundant than I/S in the tuffs and the oppositeis true for the background shales and mudstones.XRD studies (bulk rock and fraction <2 microns) show similar composition for clays in carbonatized tuffs (earlydiagenetic carbonatic concretions developed on tuffs) and argilitized tuffs (white/yellow, soft, plastically deformedthin beds). The main clay mineral in the tuffs of the VacaMuerta Fm is Fe-rich chlorite, with variable contributionof interstratified illite-smectite layers (I/S). The I/S have more smectite layers in the tuffs, that are characterized asR1 I/S, in contrast with the R3 I/S in the mudstones. To Max (498-528 °C) from Rock-Eval Pyrolysis indicate therocks are overmature and were submitted to temperatures about 150 °C (e.g. Peters, 1986).The tuffs and carbonatized tuffs in the Ameghino Formation also show abundant Fe-rich chlorite, with variablecontribution of I/S classified as R1 I/S in contrast with the R3 I/S in most mudstones. The carbonatized tuffs areslightly richer in smectite interlayers, andvitrinite Ro from 0.72 to 1.23 point to diagenetic temperatures from 100to 120 °C.The tuffaceous beds in the VacaMuerta and Ameghino Fms. are distal fallout tuffs mostly of siliceous to andesiticcomposition accumulated in anoxic basins close to a Late Jurassic volcanic arc in the western margin of Gondwana(e.g. Scasso, 2001). Large pumice as well as fine-grained glassy ash, together with the mafic minerals, andsometimes the feldspars and quartz, were replaced by carbonate, clays, pyrite and zeolites. The carbonate precipitatedduring the early diagenesis forming concretions that precluded later compaction of the beds (e.g. Scasso andKiessling, 1991). The firstly formed clay mineral phases were probably smectite and a chlorite precursor, coevalwith the carbonate precipitation and later transformed into I/S and Fe-rich chlorite during diagenesis. Smectite wastransformed to I/S during burial diagenesis and illite interlayers increased substantially.The clay mineral association in tuffaceous layers is richer in chlorite than the background sediments. The chloriteis entirely diagenetic and may be formed from a metastable precursor (Scasso and Kiessling, 2001) or fromsmectite transformation during advanced diagenesis (e.g. Foscolos, 1991) favoured by absence of K and limitedillitization (Compton, 1991). On the other hand the I/S in the tuffs have more smectite layers than in shales andmudstones, which display poor XRD patterns and may lead to erroneous estimation of the diagenetic grade. Apreliminary analysis indicates this may be the result of inherited detritic material in the fraction <2 microns or ofthe direct precipitation of R3 I/S in shales and mudstones (e.g. Wilsonet al., 2016).[1] Compton, J.S.(1991). Origin and diagenesis of clay minerals in the Monterey Formation, Santa María Basin area, California. Clays andClay Minerals, 49 p. 449-486.[2] Foscolos, A.E. (1991).Catagenesis of argillaceous sedimentary rocks. In: McIlreath, I., A. and Morrow, D., W. (eds.): Diagenesis.Geoscience Canada, Reprint Series 4, p. 177-188.[3] Peters, K.E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull., 70: 318-329.[4] Scasso, R.A.(2001). High frequency of explosive volcanic eruptions in a Late Jurassic volcanic arc: the Ameghino Formation on theAntarctic Peninsula. Journal of Sedimentary Research 71(1), p. 101-106.[5] Scasso, R.A.andKiessling, W.(2001). Diagenetic pathways in Upper Jurassic concretions from the Antarctic Peninsula. Journal of SedimentaryResearch, 71(1), p. 88-100.[6] Wilson, M.J., Shaldybin, M.V. and Wilson, L. (2016). Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I.Ocurrence and interpretation of mixed-layer R3 ordered illite/smectite.
Fil: Scasso, Roberto Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Capelli, Ignacio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Cravero, Maria Fernanda. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina
Fil: Kietzmann, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
XVI International Clay Conference from the Oceans to Space
Granada
España
Sociedad Española de Arcillas
Materia
Chlorite
Tuffs
Diagenesis
Upper Jurassic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/229302

id CONICETDig_b9f0e0a7b9932b509e5edec1b6bf57ea
oai_identifier_str oai:ri.conicet.gov.ar:11336/229302
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implicationsScasso, Roberto AdrianCapelli, Ignacio AndrésCravero, Maria FernandaKietzmann, Diego AlejandroChloriteTuffsDiagenesisUpper Jurassichttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The Upper Jurassic of two basins in southern South America and the Antarctic Peninsula is characterized by blackshale/mudstone-dominated marine successions with interbedded tuff beds milimetric to decimetric thick. Anoxicenvironment precluded bioturbation and sediment mixing, and favoured organic matter preservation (TOC 2-8%).Some of these successions may form unconventional oil reserves, such as the VacaMuerta Formation, and thereforethe study of clay mineralsis critical for the fracking process. As the clay mineral association developed ontuffs is totally diagenetic it may be regarded as a good tracer for the diagenetic grade. It is also remarkably differentfrom the clay mineral association in the background sediments.Most tuff beds in our case studies (the Ameghino Formation in the Larsen Basin, northeastern Antarctic Peninsulaand the VacaMuerta Formation in the Neuquén Basin, western Argentina) are massively replaced by carbonate,chlorite andillite-smectite interlayers (I/S). In the localities selected for this study both units underwent deep burialin the context of high geothermal gradient basins. Chlorite is more abundant than I/S in the tuffs and the oppositeis true for the background shales and mudstones.XRD studies (bulk rock and fraction <2 microns) show similar composition for clays in carbonatized tuffs (earlydiagenetic carbonatic concretions developed on tuffs) and argilitized tuffs (white/yellow, soft, plastically deformedthin beds). The main clay mineral in the tuffs of the VacaMuerta Fm is Fe-rich chlorite, with variable contributionof interstratified illite-smectite layers (I/S). The I/S have more smectite layers in the tuffs, that are characterized asR1 I/S, in contrast with the R3 I/S in the mudstones. To Max (498-528 °C) from Rock-Eval Pyrolysis indicate therocks are overmature and were submitted to temperatures about 150 °C (e.g. Peters, 1986).The tuffs and carbonatized tuffs in the Ameghino Formation also show abundant Fe-rich chlorite, with variablecontribution of I/S classified as R1 I/S in contrast with the R3 I/S in most mudstones. The carbonatized tuffs areslightly richer in smectite interlayers, andvitrinite Ro from 0.72 to 1.23 point to diagenetic temperatures from 100to 120 °C.The tuffaceous beds in the VacaMuerta and Ameghino Fms. are distal fallout tuffs mostly of siliceous to andesiticcomposition accumulated in anoxic basins close to a Late Jurassic volcanic arc in the western margin of Gondwana(e.g. Scasso, 2001). Large pumice as well as fine-grained glassy ash, together with the mafic minerals, andsometimes the feldspars and quartz, were replaced by carbonate, clays, pyrite and zeolites. The carbonate precipitatedduring the early diagenesis forming concretions that precluded later compaction of the beds (e.g. Scasso andKiessling, 1991). The firstly formed clay mineral phases were probably smectite and a chlorite precursor, coevalwith the carbonate precipitation and later transformed into I/S and Fe-rich chlorite during diagenesis. Smectite wastransformed to I/S during burial diagenesis and illite interlayers increased substantially.The clay mineral association in tuffaceous layers is richer in chlorite than the background sediments. The chloriteis entirely diagenetic and may be formed from a metastable precursor (Scasso and Kiessling, 2001) or fromsmectite transformation during advanced diagenesis (e.g. Foscolos, 1991) favoured by absence of K and limitedillitization (Compton, 1991). On the other hand the I/S in the tuffs have more smectite layers than in shales andmudstones, which display poor XRD patterns and may lead to erroneous estimation of the diagenetic grade. Apreliminary analysis indicates this may be the result of inherited detritic material in the fraction <2 microns or ofthe direct precipitation of R3 I/S in shales and mudstones (e.g. Wilsonet al., 2016).[1] Compton, J.S.(1991). Origin and diagenesis of clay minerals in the Monterey Formation, Santa María Basin area, California. Clays andClay Minerals, 49 p. 449-486.[2] Foscolos, A.E. (1991).Catagenesis of argillaceous sedimentary rocks. In: McIlreath, I., A. and Morrow, D., W. (eds.): Diagenesis.Geoscience Canada, Reprint Series 4, p. 177-188.[3] Peters, K.E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull., 70: 318-329.[4] Scasso, R.A.(2001). High frequency of explosive volcanic eruptions in a Late Jurassic volcanic arc: the Ameghino Formation on theAntarctic Peninsula. Journal of Sedimentary Research 71(1), p. 101-106.[5] Scasso, R.A.andKiessling, W.(2001). Diagenetic pathways in Upper Jurassic concretions from the Antarctic Peninsula. Journal of SedimentaryResearch, 71(1), p. 88-100.[6] Wilson, M.J., Shaldybin, M.V. and Wilson, L. (2016). Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I.Ocurrence and interpretation of mixed-layer R3 ordered illite/smectite.Fil: Scasso, Roberto Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Capelli, Ignacio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Cravero, Maria Fernanda. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; ArgentinaFil: Kietzmann, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaXVI International Clay Conference from the Oceans to SpaceGranadaEspañaSociedad Española de ArcillasDigilabs2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229302Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications; XVI International Clay Conference from the Oceans to Space; Granada; España; 2017; 680-680978-88-7522-089-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scientevents.com/scientific-research-abstracts/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:15Zoai:ri.conicet.gov.ar:11336/229302instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:15.862CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
title Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
spellingShingle Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
Scasso, Roberto Adrian
Chlorite
Tuffs
Diagenesis
Upper Jurassic
title_short Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
title_full Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
title_fullStr Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
title_full_unstemmed Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
title_sort Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications
dc.creator.none.fl_str_mv Scasso, Roberto Adrian
Capelli, Ignacio Andrés
Cravero, Maria Fernanda
Kietzmann, Diego Alejandro
author Scasso, Roberto Adrian
author_facet Scasso, Roberto Adrian
Capelli, Ignacio Andrés
Cravero, Maria Fernanda
Kietzmann, Diego Alejandro
author_role author
author2 Capelli, Ignacio Andrés
Cravero, Maria Fernanda
Kietzmann, Diego Alejandro
author2_role author
author
author
dc.subject.none.fl_str_mv Chlorite
Tuffs
Diagenesis
Upper Jurassic
topic Chlorite
Tuffs
Diagenesis
Upper Jurassic
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Upper Jurassic of two basins in southern South America and the Antarctic Peninsula is characterized by blackshale/mudstone-dominated marine successions with interbedded tuff beds milimetric to decimetric thick. Anoxicenvironment precluded bioturbation and sediment mixing, and favoured organic matter preservation (TOC 2-8%).Some of these successions may form unconventional oil reserves, such as the VacaMuerta Formation, and thereforethe study of clay mineralsis critical for the fracking process. As the clay mineral association developed ontuffs is totally diagenetic it may be regarded as a good tracer for the diagenetic grade. It is also remarkably differentfrom the clay mineral association in the background sediments.Most tuff beds in our case studies (the Ameghino Formation in the Larsen Basin, northeastern Antarctic Peninsulaand the VacaMuerta Formation in the Neuquén Basin, western Argentina) are massively replaced by carbonate,chlorite andillite-smectite interlayers (I/S). In the localities selected for this study both units underwent deep burialin the context of high geothermal gradient basins. Chlorite is more abundant than I/S in the tuffs and the oppositeis true for the background shales and mudstones.XRD studies (bulk rock and fraction <2 microns) show similar composition for clays in carbonatized tuffs (earlydiagenetic carbonatic concretions developed on tuffs) and argilitized tuffs (white/yellow, soft, plastically deformedthin beds). The main clay mineral in the tuffs of the VacaMuerta Fm is Fe-rich chlorite, with variable contributionof interstratified illite-smectite layers (I/S). The I/S have more smectite layers in the tuffs, that are characterized asR1 I/S, in contrast with the R3 I/S in the mudstones. To Max (498-528 °C) from Rock-Eval Pyrolysis indicate therocks are overmature and were submitted to temperatures about 150 °C (e.g. Peters, 1986).The tuffs and carbonatized tuffs in the Ameghino Formation also show abundant Fe-rich chlorite, with variablecontribution of I/S classified as R1 I/S in contrast with the R3 I/S in most mudstones. The carbonatized tuffs areslightly richer in smectite interlayers, andvitrinite Ro from 0.72 to 1.23 point to diagenetic temperatures from 100to 120 °C.The tuffaceous beds in the VacaMuerta and Ameghino Fms. are distal fallout tuffs mostly of siliceous to andesiticcomposition accumulated in anoxic basins close to a Late Jurassic volcanic arc in the western margin of Gondwana(e.g. Scasso, 2001). Large pumice as well as fine-grained glassy ash, together with the mafic minerals, andsometimes the feldspars and quartz, were replaced by carbonate, clays, pyrite and zeolites. The carbonate precipitatedduring the early diagenesis forming concretions that precluded later compaction of the beds (e.g. Scasso andKiessling, 1991). The firstly formed clay mineral phases were probably smectite and a chlorite precursor, coevalwith the carbonate precipitation and later transformed into I/S and Fe-rich chlorite during diagenesis. Smectite wastransformed to I/S during burial diagenesis and illite interlayers increased substantially.The clay mineral association in tuffaceous layers is richer in chlorite than the background sediments. The chloriteis entirely diagenetic and may be formed from a metastable precursor (Scasso and Kiessling, 2001) or fromsmectite transformation during advanced diagenesis (e.g. Foscolos, 1991) favoured by absence of K and limitedillitization (Compton, 1991). On the other hand the I/S in the tuffs have more smectite layers than in shales andmudstones, which display poor XRD patterns and may lead to erroneous estimation of the diagenetic grade. Apreliminary analysis indicates this may be the result of inherited detritic material in the fraction <2 microns or ofthe direct precipitation of R3 I/S in shales and mudstones (e.g. Wilsonet al., 2016).[1] Compton, J.S.(1991). Origin and diagenesis of clay minerals in the Monterey Formation, Santa María Basin area, California. Clays andClay Minerals, 49 p. 449-486.[2] Foscolos, A.E. (1991).Catagenesis of argillaceous sedimentary rocks. In: McIlreath, I., A. and Morrow, D., W. (eds.): Diagenesis.Geoscience Canada, Reprint Series 4, p. 177-188.[3] Peters, K.E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull., 70: 318-329.[4] Scasso, R.A.(2001). High frequency of explosive volcanic eruptions in a Late Jurassic volcanic arc: the Ameghino Formation on theAntarctic Peninsula. Journal of Sedimentary Research 71(1), p. 101-106.[5] Scasso, R.A.andKiessling, W.(2001). Diagenetic pathways in Upper Jurassic concretions from the Antarctic Peninsula. Journal of SedimentaryResearch, 71(1), p. 88-100.[6] Wilson, M.J., Shaldybin, M.V. and Wilson, L. (2016). Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I.Ocurrence and interpretation of mixed-layer R3 ordered illite/smectite.
Fil: Scasso, Roberto Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Capelli, Ignacio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
Fil: Cravero, Maria Fernanda. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina
Fil: Kietzmann, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina
XVI International Clay Conference from the Oceans to Space
Granada
España
Sociedad Española de Arcillas
description The Upper Jurassic of two basins in southern South America and the Antarctic Peninsula is characterized by blackshale/mudstone-dominated marine successions with interbedded tuff beds milimetric to decimetric thick. Anoxicenvironment precluded bioturbation and sediment mixing, and favoured organic matter preservation (TOC 2-8%).Some of these successions may form unconventional oil reserves, such as the VacaMuerta Formation, and thereforethe study of clay mineralsis critical for the fracking process. As the clay mineral association developed ontuffs is totally diagenetic it may be regarded as a good tracer for the diagenetic grade. It is also remarkably differentfrom the clay mineral association in the background sediments.Most tuff beds in our case studies (the Ameghino Formation in the Larsen Basin, northeastern Antarctic Peninsulaand the VacaMuerta Formation in the Neuquén Basin, western Argentina) are massively replaced by carbonate,chlorite andillite-smectite interlayers (I/S). In the localities selected for this study both units underwent deep burialin the context of high geothermal gradient basins. Chlorite is more abundant than I/S in the tuffs and the oppositeis true for the background shales and mudstones.XRD studies (bulk rock and fraction <2 microns) show similar composition for clays in carbonatized tuffs (earlydiagenetic carbonatic concretions developed on tuffs) and argilitized tuffs (white/yellow, soft, plastically deformedthin beds). The main clay mineral in the tuffs of the VacaMuerta Fm is Fe-rich chlorite, with variable contributionof interstratified illite-smectite layers (I/S). The I/S have more smectite layers in the tuffs, that are characterized asR1 I/S, in contrast with the R3 I/S in the mudstones. To Max (498-528 °C) from Rock-Eval Pyrolysis indicate therocks are overmature and were submitted to temperatures about 150 °C (e.g. Peters, 1986).The tuffs and carbonatized tuffs in the Ameghino Formation also show abundant Fe-rich chlorite, with variablecontribution of I/S classified as R1 I/S in contrast with the R3 I/S in most mudstones. The carbonatized tuffs areslightly richer in smectite interlayers, andvitrinite Ro from 0.72 to 1.23 point to diagenetic temperatures from 100to 120 °C.The tuffaceous beds in the VacaMuerta and Ameghino Fms. are distal fallout tuffs mostly of siliceous to andesiticcomposition accumulated in anoxic basins close to a Late Jurassic volcanic arc in the western margin of Gondwana(e.g. Scasso, 2001). Large pumice as well as fine-grained glassy ash, together with the mafic minerals, andsometimes the feldspars and quartz, were replaced by carbonate, clays, pyrite and zeolites. The carbonate precipitatedduring the early diagenesis forming concretions that precluded later compaction of the beds (e.g. Scasso andKiessling, 1991). The firstly formed clay mineral phases were probably smectite and a chlorite precursor, coevalwith the carbonate precipitation and later transformed into I/S and Fe-rich chlorite during diagenesis. Smectite wastransformed to I/S during burial diagenesis and illite interlayers increased substantially.The clay mineral association in tuffaceous layers is richer in chlorite than the background sediments. The chloriteis entirely diagenetic and may be formed from a metastable precursor (Scasso and Kiessling, 2001) or fromsmectite transformation during advanced diagenesis (e.g. Foscolos, 1991) favoured by absence of K and limitedillitization (Compton, 1991). On the other hand the I/S in the tuffs have more smectite layers than in shales andmudstones, which display poor XRD patterns and may lead to erroneous estimation of the diagenetic grade. Apreliminary analysis indicates this may be the result of inherited detritic material in the fraction <2 microns or ofthe direct precipitation of R3 I/S in shales and mudstones (e.g. Wilsonet al., 2016).[1] Compton, J.S.(1991). Origin and diagenesis of clay minerals in the Monterey Formation, Santa María Basin area, California. Clays andClay Minerals, 49 p. 449-486.[2] Foscolos, A.E. (1991).Catagenesis of argillaceous sedimentary rocks. In: McIlreath, I., A. and Morrow, D., W. (eds.): Diagenesis.Geoscience Canada, Reprint Series 4, p. 177-188.[3] Peters, K.E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull., 70: 318-329.[4] Scasso, R.A.(2001). High frequency of explosive volcanic eruptions in a Late Jurassic volcanic arc: the Ameghino Formation on theAntarctic Peninsula. Journal of Sedimentary Research 71(1), p. 101-106.[5] Scasso, R.A.andKiessling, W.(2001). Diagenetic pathways in Upper Jurassic concretions from the Antarctic Peninsula. Journal of SedimentaryResearch, 71(1), p. 88-100.[6] Wilson, M.J., Shaldybin, M.V. and Wilson, L. (2016). Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I.Ocurrence and interpretation of mixed-layer R3 ordered illite/smectite.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/229302
Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications; XVI International Clay Conference from the Oceans to Space; Granada; España; 2017; 680-680
978-88-7522-089-1
CONICET Digital
CONICET
url http://hdl.handle.net/11336/229302
identifier_str_mv Chlorite-rich clay associations in interbedded tuffs and mudstones: diagenetic implications; XVI International Clay Conference from the Oceans to Space; Granada; España; 2017; 680-680
978-88-7522-089-1
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.scientevents.com/scientific-research-abstracts/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Digilabs
publisher.none.fl_str_mv Digilabs
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614263592714240
score 13.069144