Magnetised accretion discs in Kerr spacetimes
- Autores
- Ranea Sandoval, Ignacio Francisco; García, Federico
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. Observational data from X-ray binary systems provide strong evidence of astronomical objects that are too massive and compact to be explained as neutron or hybrid stars. When these systems are in the thermal (high/soft) state, they emit mainly in the 0.1−5 keV energy range. This emission can be explained by thin accretion discs that formed around compact objects like black holes. The profile of the fluorescent iron line is useful to obtain insight into the nature of the compact object. General relativity does not ensure that a black hole must form after the complete gravitational collapse of very massive stars, and other theoretical models such as naked singularities cannot be discarded. The cosmic censorship conjecture was proposed by Penrose to avoid these possibilities and is yet to be proven. Aims. We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. Methods. We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. Results. We show that an external magnetic field produces potentially observable modifications on the thermal energy spectrum and the fluorescent iron line profile. Thermal energy spectra of naked singularities are harder and brighter than those from black holes, and in addition, peak and cut-off energies are affected by the external magnetic field. Moreover, iron line profiles of slowly rotating black holes suffer more changes by a uniform magnetic field, while nearly extremal black holes and naked singularities are more altered in the dipolar case. Based on our calculations, we discard the possibility of modelling the archetypal black-hole candidate in Cygnus X-1 as a naked singularity. Conclusions. Comparison of our models with observational data can be used to probe the cosmic censorship conjecture and to estimate the existence and global geometry of magnetic fields around compact objects by fitting the thermal energy spectra and iron line profiles of X-ray binaries.
Fil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Area Fisica Teorica; Argentina
Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina - Materia
-
black hole physics
accretion, accretion disks
magnetic fields
line: profiles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7535
Ver los metadatos del registro completo
id |
CONICETDig_b9d1278d4f18a0288cad50985ca1c71d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7535 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Magnetised accretion discs in Kerr spacetimesRanea Sandoval, Ignacio FranciscoGarcía, Federicoblack hole physicsaccretion, accretion disksmagnetic fieldsline: profileshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Observational data from X-ray binary systems provide strong evidence of astronomical objects that are too massive and compact to be explained as neutron or hybrid stars. When these systems are in the thermal (high/soft) state, they emit mainly in the 0.1−5 keV energy range. This emission can be explained by thin accretion discs that formed around compact objects like black holes. The profile of the fluorescent iron line is useful to obtain insight into the nature of the compact object. General relativity does not ensure that a black hole must form after the complete gravitational collapse of very massive stars, and other theoretical models such as naked singularities cannot be discarded. The cosmic censorship conjecture was proposed by Penrose to avoid these possibilities and is yet to be proven. Aims. We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. Methods. We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. Results. We show that an external magnetic field produces potentially observable modifications on the thermal energy spectrum and the fluorescent iron line profile. Thermal energy spectra of naked singularities are harder and brighter than those from black holes, and in addition, peak and cut-off energies are affected by the external magnetic field. Moreover, iron line profiles of slowly rotating black holes suffer more changes by a uniform magnetic field, while nearly extremal black holes and naked singularities are more altered in the dipolar case. Based on our calculations, we discard the possibility of modelling the archetypal black-hole candidate in Cygnus X-1 as a naked singularity. Conclusions. Comparison of our models with observational data can be used to probe the cosmic censorship conjecture and to estimate the existence and global geometry of magnetic fields around compact objects by fitting the thermal energy spectra and iron line profiles of X-ray binaries.Fil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Area Fisica Teorica; ArgentinaFil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaEDP Sciences2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7535Ranea Sandoval, Ignacio Francisco; García, Federico; Magnetised accretion discs in Kerr spacetimes; EDP Sciences; Astronomy and Astrophysics; 574; 40; 2-2015; 1-120004-6361enginfo:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2015/02/aa24539-14/aa24539-14.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201424539info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:53Zoai:ri.conicet.gov.ar:11336/7535instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:54.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Magnetised accretion discs in Kerr spacetimes |
title |
Magnetised accretion discs in Kerr spacetimes |
spellingShingle |
Magnetised accretion discs in Kerr spacetimes Ranea Sandoval, Ignacio Francisco black hole physics accretion, accretion disks magnetic fields line: profiles |
title_short |
Magnetised accretion discs in Kerr spacetimes |
title_full |
Magnetised accretion discs in Kerr spacetimes |
title_fullStr |
Magnetised accretion discs in Kerr spacetimes |
title_full_unstemmed |
Magnetised accretion discs in Kerr spacetimes |
title_sort |
Magnetised accretion discs in Kerr spacetimes |
dc.creator.none.fl_str_mv |
Ranea Sandoval, Ignacio Francisco García, Federico |
author |
Ranea Sandoval, Ignacio Francisco |
author_facet |
Ranea Sandoval, Ignacio Francisco García, Federico |
author_role |
author |
author2 |
García, Federico |
author2_role |
author |
dc.subject.none.fl_str_mv |
black hole physics accretion, accretion disks magnetic fields line: profiles |
topic |
black hole physics accretion, accretion disks magnetic fields line: profiles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Context. Observational data from X-ray binary systems provide strong evidence of astronomical objects that are too massive and compact to be explained as neutron or hybrid stars. When these systems are in the thermal (high/soft) state, they emit mainly in the 0.1−5 keV energy range. This emission can be explained by thin accretion discs that formed around compact objects like black holes. The profile of the fluorescent iron line is useful to obtain insight into the nature of the compact object. General relativity does not ensure that a black hole must form after the complete gravitational collapse of very massive stars, and other theoretical models such as naked singularities cannot be discarded. The cosmic censorship conjecture was proposed by Penrose to avoid these possibilities and is yet to be proven. Aims. We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. Methods. We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. Results. We show that an external magnetic field produces potentially observable modifications on the thermal energy spectrum and the fluorescent iron line profile. Thermal energy spectra of naked singularities are harder and brighter than those from black holes, and in addition, peak and cut-off energies are affected by the external magnetic field. Moreover, iron line profiles of slowly rotating black holes suffer more changes by a uniform magnetic field, while nearly extremal black holes and naked singularities are more altered in the dipolar case. Based on our calculations, we discard the possibility of modelling the archetypal black-hole candidate in Cygnus X-1 as a naked singularity. Conclusions. Comparison of our models with observational data can be used to probe the cosmic censorship conjecture and to estimate the existence and global geometry of magnetic fields around compact objects by fitting the thermal energy spectra and iron line profiles of X-ray binaries. Fil: Ranea Sandoval, Ignacio Francisco. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Area Fisica Teorica; Argentina Fil: García, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina |
description |
Context. Observational data from X-ray binary systems provide strong evidence of astronomical objects that are too massive and compact to be explained as neutron or hybrid stars. When these systems are in the thermal (high/soft) state, they emit mainly in the 0.1−5 keV energy range. This emission can be explained by thin accretion discs that formed around compact objects like black holes. The profile of the fluorescent iron line is useful to obtain insight into the nature of the compact object. General relativity does not ensure that a black hole must form after the complete gravitational collapse of very massive stars, and other theoretical models such as naked singularities cannot be discarded. The cosmic censorship conjecture was proposed by Penrose to avoid these possibilities and is yet to be proven. Aims. We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. Methods. We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. Results. We show that an external magnetic field produces potentially observable modifications on the thermal energy spectrum and the fluorescent iron line profile. Thermal energy spectra of naked singularities are harder and brighter than those from black holes, and in addition, peak and cut-off energies are affected by the external magnetic field. Moreover, iron line profiles of slowly rotating black holes suffer more changes by a uniform magnetic field, while nearly extremal black holes and naked singularities are more altered in the dipolar case. Based on our calculations, we discard the possibility of modelling the archetypal black-hole candidate in Cygnus X-1 as a naked singularity. Conclusions. Comparison of our models with observational data can be used to probe the cosmic censorship conjecture and to estimate the existence and global geometry of magnetic fields around compact objects by fitting the thermal energy spectra and iron line profiles of X-ray binaries. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7535 Ranea Sandoval, Ignacio Francisco; García, Federico; Magnetised accretion discs in Kerr spacetimes; EDP Sciences; Astronomy and Astrophysics; 574; 40; 2-2015; 1-12 0004-6361 |
url |
http://hdl.handle.net/11336/7535 |
identifier_str_mv |
Ranea Sandoval, Ignacio Francisco; García, Federico; Magnetised accretion discs in Kerr spacetimes; EDP Sciences; Astronomy and Astrophysics; 574; 40; 2-2015; 1-12 0004-6361 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2015/02/aa24539-14/aa24539-14.html info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201424539 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980230348668928 |
score |
12.993085 |