Quantum critical metals in 4 − ε dimensions
- Autores
- Torroba, Gonzalo; Wang, Huajia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the quantum theory of a Fermi surface coupled to a gapless boson scalar in D = 4 − ε space-time dimensions as a simple model for non-Fermi liquids (NFL) near a quantum phase transition. Our analysis takes into account the full backreaction from Landau damping of the boson, and obtains an RG flow that proceeds through three distinct stages. Above the scale of Landau damping, the Fermi velocity flows to zero, while the coupling evolves according to its classical dimension. Once damping becomes important, its backreaction leads to a crossover regime where dynamic and static damping effects compete and the fermion self-energy does not respect scaling. Below this crossover and having tuned the boson to criticality, the theory flows to a z = 3 scalar interacting with an NFL. We finally analyze the IR phases of the theory with arbitrary number of flavors N c . When N c is small, the superconducting dome covers the NFL behavior; strikingly, for moderately large N c , we find that NFL effects become important first, before the onset of superconductivity. A generic prediction of the theory is that the Fermi velocity and quasiparticle residue vanish with a power law ω ε as the fixed point is approached. These features may be useful for understanding some of the phenomenology of high- T c materials in a systematic ε expansion.
Fil: Torroba, Gonzalo. University of Stanford; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wang, Huajia. University of Stanford; Estados Unidos - Materia
-
Non-Fermi Liquid
Critical Metal - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32727
Ver los metadatos del registro completo
id |
CONICETDig_b92930dd74f3c065b7f6f180f9d9e8c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32727 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum critical metals in 4 − ε dimensionsTorroba, GonzaloWang, HuajiaNon-Fermi LiquidCritical Metalhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the quantum theory of a Fermi surface coupled to a gapless boson scalar in D = 4 − ε space-time dimensions as a simple model for non-Fermi liquids (NFL) near a quantum phase transition. Our analysis takes into account the full backreaction from Landau damping of the boson, and obtains an RG flow that proceeds through three distinct stages. Above the scale of Landau damping, the Fermi velocity flows to zero, while the coupling evolves according to its classical dimension. Once damping becomes important, its backreaction leads to a crossover regime where dynamic and static damping effects compete and the fermion self-energy does not respect scaling. Below this crossover and having tuned the boson to criticality, the theory flows to a z = 3 scalar interacting with an NFL. We finally analyze the IR phases of the theory with arbitrary number of flavors N c . When N c is small, the superconducting dome covers the NFL behavior; strikingly, for moderately large N c , we find that NFL effects become important first, before the onset of superconductivity. A generic prediction of the theory is that the Fermi velocity and quasiparticle residue vanish with a power law ω ε as the fixed point is approached. These features may be useful for understanding some of the phenomenology of high- T c materials in a systematic ε expansion.Fil: Torroba, Gonzalo. University of Stanford; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wang, Huajia. University of Stanford; Estados UnidosAmerican Physical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32727Torroba, Gonzalo; Wang, Huajia; Quantum critical metals in 4 − ε dimensions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 90; 16; 10-2014; 1-17; 1651441098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.90.165144info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.165144info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:37Zoai:ri.conicet.gov.ar:11336/32727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:37.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum critical metals in 4 − ε dimensions |
title |
Quantum critical metals in 4 − ε dimensions |
spellingShingle |
Quantum critical metals in 4 − ε dimensions Torroba, Gonzalo Non-Fermi Liquid Critical Metal |
title_short |
Quantum critical metals in 4 − ε dimensions |
title_full |
Quantum critical metals in 4 − ε dimensions |
title_fullStr |
Quantum critical metals in 4 − ε dimensions |
title_full_unstemmed |
Quantum critical metals in 4 − ε dimensions |
title_sort |
Quantum critical metals in 4 − ε dimensions |
dc.creator.none.fl_str_mv |
Torroba, Gonzalo Wang, Huajia |
author |
Torroba, Gonzalo |
author_facet |
Torroba, Gonzalo Wang, Huajia |
author_role |
author |
author2 |
Wang, Huajia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Non-Fermi Liquid Critical Metal |
topic |
Non-Fermi Liquid Critical Metal |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the quantum theory of a Fermi surface coupled to a gapless boson scalar in D = 4 − ε space-time dimensions as a simple model for non-Fermi liquids (NFL) near a quantum phase transition. Our analysis takes into account the full backreaction from Landau damping of the boson, and obtains an RG flow that proceeds through three distinct stages. Above the scale of Landau damping, the Fermi velocity flows to zero, while the coupling evolves according to its classical dimension. Once damping becomes important, its backreaction leads to a crossover regime where dynamic and static damping effects compete and the fermion self-energy does not respect scaling. Below this crossover and having tuned the boson to criticality, the theory flows to a z = 3 scalar interacting with an NFL. We finally analyze the IR phases of the theory with arbitrary number of flavors N c . When N c is small, the superconducting dome covers the NFL behavior; strikingly, for moderately large N c , we find that NFL effects become important first, before the onset of superconductivity. A generic prediction of the theory is that the Fermi velocity and quasiparticle residue vanish with a power law ω ε as the fixed point is approached. These features may be useful for understanding some of the phenomenology of high- T c materials in a systematic ε expansion. Fil: Torroba, Gonzalo. University of Stanford; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Wang, Huajia. University of Stanford; Estados Unidos |
description |
We study the quantum theory of a Fermi surface coupled to a gapless boson scalar in D = 4 − ε space-time dimensions as a simple model for non-Fermi liquids (NFL) near a quantum phase transition. Our analysis takes into account the full backreaction from Landau damping of the boson, and obtains an RG flow that proceeds through three distinct stages. Above the scale of Landau damping, the Fermi velocity flows to zero, while the coupling evolves according to its classical dimension. Once damping becomes important, its backreaction leads to a crossover regime where dynamic and static damping effects compete and the fermion self-energy does not respect scaling. Below this crossover and having tuned the boson to criticality, the theory flows to a z = 3 scalar interacting with an NFL. We finally analyze the IR phases of the theory with arbitrary number of flavors N c . When N c is small, the superconducting dome covers the NFL behavior; strikingly, for moderately large N c , we find that NFL effects become important first, before the onset of superconductivity. A generic prediction of the theory is that the Fermi velocity and quasiparticle residue vanish with a power law ω ε as the fixed point is approached. These features may be useful for understanding some of the phenomenology of high- T c materials in a systematic ε expansion. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32727 Torroba, Gonzalo; Wang, Huajia; Quantum critical metals in 4 − ε dimensions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 90; 16; 10-2014; 1-17; 165144 1098-0121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32727 |
identifier_str_mv |
Torroba, Gonzalo; Wang, Huajia; Quantum critical metals in 4 − ε dimensions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 90; 16; 10-2014; 1-17; 165144 1098-0121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.90.165144 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.165144 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981071927377920 |
score |
12.48226 |