Dynamical characterization of the last prolonged solar minima
- Autores
- Cionco, Rodolfo Gustavo; Compagnucci, Rosa Hilda
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events) However, at present there is no clear physical mechanism relating these phenomena The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions In particular, at these moments, the radial component of the Sun's acceleration (i.e.; in the barycentre-Sun direction) had an exceptional magnitude These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle This process begins about 40 years before the solar angular momentum inversions, i.e.; before Maunder Minimum, Dalton Minimum, and before the present extended minimum Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima We discuss the possible implications of these results for the solar cycle including the present extended minimum.
Fil: Cionco, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina
Fil: Compagnucci, Rosa Hilda. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
GRAND MINIMA EVENTS
SOLAR ACTIVITY
SUN-EARTH CONNECTION
SUN-PLANETS INTERACTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/189615
Ver los metadatos del registro completo
| id |
CONICETDig_b91172cd3763b3ac8eff88eec5115187 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/189615 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Dynamical characterization of the last prolonged solar minimaCionco, Rodolfo GustavoCompagnucci, Rosa HildaGRAND MINIMA EVENTSSOLAR ACTIVITYSUN-EARTH CONNECTIONSUN-PLANETS INTERACTIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events) However, at present there is no clear physical mechanism relating these phenomena The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions In particular, at these moments, the radial component of the Sun's acceleration (i.e.; in the barycentre-Sun direction) had an exceptional magnitude These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle This process begins about 40 years before the solar angular momentum inversions, i.e.; before Maunder Minimum, Dalton Minimum, and before the present extended minimum Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima We discuss the possible implications of these results for the solar cycle including the present extended minimum.Fil: Cionco, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; ArgentinaFil: Compagnucci, Rosa Hilda. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189615Cionco, Rodolfo Gustavo; Compagnucci, Rosa Hilda; Dynamical characterization of the last prolonged solar minima; Elsevier; Advances in Space Research; 50; 10; 7-2012; 1434-14440273-1177CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.asr.2012.07.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:08Zoai:ri.conicet.gov.ar:11336/189615instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:08.412CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Dynamical characterization of the last prolonged solar minima |
| title |
Dynamical characterization of the last prolonged solar minima |
| spellingShingle |
Dynamical characterization of the last prolonged solar minima Cionco, Rodolfo Gustavo GRAND MINIMA EVENTS SOLAR ACTIVITY SUN-EARTH CONNECTION SUN-PLANETS INTERACTIONS |
| title_short |
Dynamical characterization of the last prolonged solar minima |
| title_full |
Dynamical characterization of the last prolonged solar minima |
| title_fullStr |
Dynamical characterization of the last prolonged solar minima |
| title_full_unstemmed |
Dynamical characterization of the last prolonged solar minima |
| title_sort |
Dynamical characterization of the last prolonged solar minima |
| dc.creator.none.fl_str_mv |
Cionco, Rodolfo Gustavo Compagnucci, Rosa Hilda |
| author |
Cionco, Rodolfo Gustavo |
| author_facet |
Cionco, Rodolfo Gustavo Compagnucci, Rosa Hilda |
| author_role |
author |
| author2 |
Compagnucci, Rosa Hilda |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
GRAND MINIMA EVENTS SOLAR ACTIVITY SUN-EARTH CONNECTION SUN-PLANETS INTERACTIONS |
| topic |
GRAND MINIMA EVENTS SOLAR ACTIVITY SUN-EARTH CONNECTION SUN-PLANETS INTERACTIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events) However, at present there is no clear physical mechanism relating these phenomena The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions In particular, at these moments, the radial component of the Sun's acceleration (i.e.; in the barycentre-Sun direction) had an exceptional magnitude These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle This process begins about 40 years before the solar angular momentum inversions, i.e.; before Maunder Minimum, Dalton Minimum, and before the present extended minimum Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima We discuss the possible implications of these results for the solar cycle including the present extended minimum. Fil: Cionco, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina Fil: Compagnucci, Rosa Hilda. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events) However, at present there is no clear physical mechanism relating these phenomena The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions In particular, at these moments, the radial component of the Sun's acceleration (i.e.; in the barycentre-Sun direction) had an exceptional magnitude These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle This process begins about 40 years before the solar angular momentum inversions, i.e.; before Maunder Minimum, Dalton Minimum, and before the present extended minimum Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima We discuss the possible implications of these results for the solar cycle including the present extended minimum. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/189615 Cionco, Rodolfo Gustavo; Compagnucci, Rosa Hilda; Dynamical characterization of the last prolonged solar minima; Elsevier; Advances in Space Research; 50; 10; 7-2012; 1434-1444 0273-1177 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/189615 |
| identifier_str_mv |
Cionco, Rodolfo Gustavo; Compagnucci, Rosa Hilda; Dynamical characterization of the last prolonged solar minima; Elsevier; Advances in Space Research; 50; 10; 7-2012; 1434-1444 0273-1177 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asr.2012.07.013 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597102636040192 |
| score |
13.25334 |