Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Pal...

Autores
Iglesia Llanos, Maria Paula; Tait, J. A.; Popov, V.; Abalmassova, A.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study area is situated along the Zolotica river in NW Russia, located within the Kola-Dvyna Rift System in the Baltic Shield that developed during Meso and Neoproterozoic times. A 9-m thick section made up of shallow marine sediments of Upper Ediacaran age was sampled in this locality. Two volcaniclastic levels from the middle part of the section yielded an age of ∼556 Ma. (U/Pb SHRIMP-II on zircons). Two magnetic components were successfully isolated, component A (Decl = 157.1, Incl = 68.0, α95 = 1.9°, N = 575 in situ) carried by magnetite and component B (Decl = 120.3, Incl = - 31.7, α95 = 3.9°, N = 57, bedding corrected), carried by haematite. While component A is thought to represent a younger overprint direction, the in situ direction for component B on the other hand, is dissimilar to any expected younger direction and is considered to be primary magnetisation in origin, acquired during or soon after deposition of the sediments in the Late Ediacaran. The corresponding palaeomagnetic pole for component A in situ is located at Lon = 55.4°E, Lat = 31°N, A95 = 2.7° and for component B at Lon = 110°E, Lat = 28.3°S, A95 = 3.8°, N = 57. Combined with other palaeomagnetic poles of the same tectonostratigraphic unit an alternative apparent polar wander path for the Late Proterozoic-Early Palaeozoic of Baltica is proposed. Such an alternative path shows that after the mid Cryogenian (750 Ma), the poles that were situated over South Africa (p.d.c.) moved to the east until they reached Australia during the Late Ediacaran (555 Ma) where they remained approximately stationary until the beginning of the Cambrian (∼545 Ma). Finally, they moved to the northwest until they reached the Arabian Peninsula in the Early Ordovician. Palaeolatitudes indicate that Baltica situated near the equator from the Cryogenian through to the Ediacaran moving gradually to the south at c. 1 cm/yr. During the Late Early Ediacaran, the plate suddenly began to drift northward at c. 8 cm/yr and in the boundary with the Cambrian it was positioned in low to intermediate latitudes. Finally, Baltica began to move back to the south at c. 13 cm/yr until in the Early Ordovician, reaching intermediate to high southern latitudes.
Fil: Iglesia Llanos, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina. Universität München; Alemania
Fil: Tait, J. A.. Universität München; Alemania
Fil: Popov, V.. All-Russia Petroleum Research Exploration Institute; Rusia
Fil: Abalmassova, A.. Universität München; Alemania
Materia
Ediacaran
Baltica
Palaeomagnetism
Neoproterozoic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92776

id CONICETDig_b7f032d6c8fb809017f7249ce59d1ec3
oai_identifier_str oai:ri.conicet.gov.ar:11336/92776
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early PalaeozoicIglesia Llanos, Maria PaulaTait, J. A.Popov, V.Abalmassova, A.EdiacaranBalticaPalaeomagnetismNeoproterozoicThe study area is situated along the Zolotica river in NW Russia, located within the Kola-Dvyna Rift System in the Baltic Shield that developed during Meso and Neoproterozoic times. A 9-m thick section made up of shallow marine sediments of Upper Ediacaran age was sampled in this locality. Two volcaniclastic levels from the middle part of the section yielded an age of ∼556 Ma. (U/Pb SHRIMP-II on zircons). Two magnetic components were successfully isolated, component A (Decl = 157.1, Incl = 68.0, α95 = 1.9°, N = 575 in situ) carried by magnetite and component B (Decl = 120.3, Incl = - 31.7, α95 = 3.9°, N = 57, bedding corrected), carried by haematite. While component A is thought to represent a younger overprint direction, the in situ direction for component B on the other hand, is dissimilar to any expected younger direction and is considered to be primary magnetisation in origin, acquired during or soon after deposition of the sediments in the Late Ediacaran. The corresponding palaeomagnetic pole for component A in situ is located at Lon = 55.4°E, Lat = 31°N, A95 = 2.7° and for component B at Lon = 110°E, Lat = 28.3°S, A95 = 3.8°, N = 57. Combined with other palaeomagnetic poles of the same tectonostratigraphic unit an alternative apparent polar wander path for the Late Proterozoic-Early Palaeozoic of Baltica is proposed. Such an alternative path shows that after the mid Cryogenian (750 Ma), the poles that were situated over South Africa (p.d.c.) moved to the east until they reached Australia during the Late Ediacaran (555 Ma) where they remained approximately stationary until the beginning of the Cambrian (∼545 Ma). Finally, they moved to the northwest until they reached the Arabian Peninsula in the Early Ordovician. Palaeolatitudes indicate that Baltica situated near the equator from the Cryogenian through to the Ediacaran moving gradually to the south at c. 1 cm/yr. During the Late Early Ediacaran, the plate suddenly began to drift northward at c. 8 cm/yr and in the boundary with the Cambrian it was positioned in low to intermediate latitudes. Finally, Baltica began to move back to the south at c. 13 cm/yr until in the Early Ordovician, reaching intermediate to high southern latitudes.Fil: Iglesia Llanos, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina. Universität München; AlemaniaFil: Tait, J. A.. Universität München; AlemaniaFil: Popov, V.. All-Russia Petroleum Research Exploration Institute; RusiaFil: Abalmassova, A.. Universität München; AlemaniaElsevier Science2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92776Iglesia Llanos, Maria Paula; Tait, J. A.; Popov, V.; Abalmassova, A.; Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic; Elsevier Science; Earth and Planetary Science Letters; 240; 3-4; 12-2005; 732-7470012-821XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2005.09.063info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X0500573Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:42Zoai:ri.conicet.gov.ar:11336/92776instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:43.053CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
title Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
spellingShingle Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
Iglesia Llanos, Maria Paula
Ediacaran
Baltica
Palaeomagnetism
Neoproterozoic
title_short Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
title_full Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
title_fullStr Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
title_full_unstemmed Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
title_sort Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic
dc.creator.none.fl_str_mv Iglesia Llanos, Maria Paula
Tait, J. A.
Popov, V.
Abalmassova, A.
author Iglesia Llanos, Maria Paula
author_facet Iglesia Llanos, Maria Paula
Tait, J. A.
Popov, V.
Abalmassova, A.
author_role author
author2 Tait, J. A.
Popov, V.
Abalmassova, A.
author2_role author
author
author
dc.subject.none.fl_str_mv Ediacaran
Baltica
Palaeomagnetism
Neoproterozoic
topic Ediacaran
Baltica
Palaeomagnetism
Neoproterozoic
dc.description.none.fl_txt_mv The study area is situated along the Zolotica river in NW Russia, located within the Kola-Dvyna Rift System in the Baltic Shield that developed during Meso and Neoproterozoic times. A 9-m thick section made up of shallow marine sediments of Upper Ediacaran age was sampled in this locality. Two volcaniclastic levels from the middle part of the section yielded an age of ∼556 Ma. (U/Pb SHRIMP-II on zircons). Two magnetic components were successfully isolated, component A (Decl = 157.1, Incl = 68.0, α95 = 1.9°, N = 575 in situ) carried by magnetite and component B (Decl = 120.3, Incl = - 31.7, α95 = 3.9°, N = 57, bedding corrected), carried by haematite. While component A is thought to represent a younger overprint direction, the in situ direction for component B on the other hand, is dissimilar to any expected younger direction and is considered to be primary magnetisation in origin, acquired during or soon after deposition of the sediments in the Late Ediacaran. The corresponding palaeomagnetic pole for component A in situ is located at Lon = 55.4°E, Lat = 31°N, A95 = 2.7° and for component B at Lon = 110°E, Lat = 28.3°S, A95 = 3.8°, N = 57. Combined with other palaeomagnetic poles of the same tectonostratigraphic unit an alternative apparent polar wander path for the Late Proterozoic-Early Palaeozoic of Baltica is proposed. Such an alternative path shows that after the mid Cryogenian (750 Ma), the poles that were situated over South Africa (p.d.c.) moved to the east until they reached Australia during the Late Ediacaran (555 Ma) where they remained approximately stationary until the beginning of the Cambrian (∼545 Ma). Finally, they moved to the northwest until they reached the Arabian Peninsula in the Early Ordovician. Palaeolatitudes indicate that Baltica situated near the equator from the Cryogenian through to the Ediacaran moving gradually to the south at c. 1 cm/yr. During the Late Early Ediacaran, the plate suddenly began to drift northward at c. 8 cm/yr and in the boundary with the Cambrian it was positioned in low to intermediate latitudes. Finally, Baltica began to move back to the south at c. 13 cm/yr until in the Early Ordovician, reaching intermediate to high southern latitudes.
Fil: Iglesia Llanos, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentina. Universität München; Alemania
Fil: Tait, J. A.. Universität München; Alemania
Fil: Popov, V.. All-Russia Petroleum Research Exploration Institute; Rusia
Fil: Abalmassova, A.. Universität München; Alemania
description The study area is situated along the Zolotica river in NW Russia, located within the Kola-Dvyna Rift System in the Baltic Shield that developed during Meso and Neoproterozoic times. A 9-m thick section made up of shallow marine sediments of Upper Ediacaran age was sampled in this locality. Two volcaniclastic levels from the middle part of the section yielded an age of ∼556 Ma. (U/Pb SHRIMP-II on zircons). Two magnetic components were successfully isolated, component A (Decl = 157.1, Incl = 68.0, α95 = 1.9°, N = 575 in situ) carried by magnetite and component B (Decl = 120.3, Incl = - 31.7, α95 = 3.9°, N = 57, bedding corrected), carried by haematite. While component A is thought to represent a younger overprint direction, the in situ direction for component B on the other hand, is dissimilar to any expected younger direction and is considered to be primary magnetisation in origin, acquired during or soon after deposition of the sediments in the Late Ediacaran. The corresponding palaeomagnetic pole for component A in situ is located at Lon = 55.4°E, Lat = 31°N, A95 = 2.7° and for component B at Lon = 110°E, Lat = 28.3°S, A95 = 3.8°, N = 57. Combined with other palaeomagnetic poles of the same tectonostratigraphic unit an alternative apparent polar wander path for the Late Proterozoic-Early Palaeozoic of Baltica is proposed. Such an alternative path shows that after the mid Cryogenian (750 Ma), the poles that were situated over South Africa (p.d.c.) moved to the east until they reached Australia during the Late Ediacaran (555 Ma) where they remained approximately stationary until the beginning of the Cambrian (∼545 Ma). Finally, they moved to the northwest until they reached the Arabian Peninsula in the Early Ordovician. Palaeolatitudes indicate that Baltica situated near the equator from the Cryogenian through to the Ediacaran moving gradually to the south at c. 1 cm/yr. During the Late Early Ediacaran, the plate suddenly began to drift northward at c. 8 cm/yr and in the boundary with the Cambrian it was positioned in low to intermediate latitudes. Finally, Baltica began to move back to the south at c. 13 cm/yr until in the Early Ordovician, reaching intermediate to high southern latitudes.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92776
Iglesia Llanos, Maria Paula; Tait, J. A.; Popov, V.; Abalmassova, A.; Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic; Elsevier Science; Earth and Planetary Science Letters; 240; 3-4; 12-2005; 732-747
0012-821X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92776
identifier_str_mv Iglesia Llanos, Maria Paula; Tait, J. A.; Popov, V.; Abalmassova, A.; Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the Late Proterozoic-Early Palaeozoic; Elsevier Science; Earth and Planetary Science Letters; 240; 3-4; 12-2005; 732-747
0012-821X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2005.09.063
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X0500573X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268936136032256
score 13.13397