A logical framework to study concept-learning biases in the presence of multiple explanations
- Autores
- Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning.
Fil: Abriola, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina - Materia
-
CONCEPT LEARNING
LEARNING BIASES
PROPOSITIONAL LOGIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151725
Ver los metadatos del registro completo
id |
CONICETDig_b7d47ee2a94caed6c12df5921fd8a307 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151725 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A logical framework to study concept-learning biases in the presence of multiple explanationsAbriola, Sergio AlejandroTano, PabloRomano, Sergio GastonFigueira, SantiagoCONCEPT LEARNINGLEARNING BIASESPROPOSITIONAL LOGIChttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning.Fil: Abriola, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaSpringer2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151725Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago; A logical framework to study concept-learning biases in the presence of multiple explanations; Springer; Behavior Research Methods; 6-2021; 1-191554-3528CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.3758/s13428-021-01596-4info:eu-repo/semantics/altIdentifier/doi/10.3758/s13428-021-01596-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:20Zoai:ri.conicet.gov.ar:11336/151725instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:20.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A logical framework to study concept-learning biases in the presence of multiple explanations |
title |
A logical framework to study concept-learning biases in the presence of multiple explanations |
spellingShingle |
A logical framework to study concept-learning biases in the presence of multiple explanations Abriola, Sergio Alejandro CONCEPT LEARNING LEARNING BIASES PROPOSITIONAL LOGIC |
title_short |
A logical framework to study concept-learning biases in the presence of multiple explanations |
title_full |
A logical framework to study concept-learning biases in the presence of multiple explanations |
title_fullStr |
A logical framework to study concept-learning biases in the presence of multiple explanations |
title_full_unstemmed |
A logical framework to study concept-learning biases in the presence of multiple explanations |
title_sort |
A logical framework to study concept-learning biases in the presence of multiple explanations |
dc.creator.none.fl_str_mv |
Abriola, Sergio Alejandro Tano, Pablo Romano, Sergio Gaston Figueira, Santiago |
author |
Abriola, Sergio Alejandro |
author_facet |
Abriola, Sergio Alejandro Tano, Pablo Romano, Sergio Gaston Figueira, Santiago |
author_role |
author |
author2 |
Tano, Pablo Romano, Sergio Gaston Figueira, Santiago |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CONCEPT LEARNING LEARNING BIASES PROPOSITIONAL LOGIC |
topic |
CONCEPT LEARNING LEARNING BIASES PROPOSITIONAL LOGIC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning. Fil: Abriola, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina |
description |
When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151725 Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago; A logical framework to study concept-learning biases in the presence of multiple explanations; Springer; Behavior Research Methods; 6-2021; 1-19 1554-3528 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151725 |
identifier_str_mv |
Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago; A logical framework to study concept-learning biases in the presence of multiple explanations; Springer; Behavior Research Methods; 6-2021; 1-19 1554-3528 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.3758/s13428-021-01596-4 info:eu-repo/semantics/altIdentifier/doi/10.3758/s13428-021-01596-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269089900265472 |
score |
13.13397 |