A logical framework to study concept-learning biases in the presence of multiple explanations

Autores
Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning.
Fil: Abriola, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Materia
CONCEPT LEARNING
LEARNING BIASES
PROPOSITIONAL LOGIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151725

id CONICETDig_b7d47ee2a94caed6c12df5921fd8a307
oai_identifier_str oai:ri.conicet.gov.ar:11336/151725
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A logical framework to study concept-learning biases in the presence of multiple explanationsAbriola, Sergio AlejandroTano, PabloRomano, Sergio GastonFigueira, SantiagoCONCEPT LEARNINGLEARNING BIASESPROPOSITIONAL LOGIChttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning.Fil: Abriola, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaSpringer2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151725Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago; A logical framework to study concept-learning biases in the presence of multiple explanations; Springer; Behavior Research Methods; 6-2021; 1-191554-3528CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.3758/s13428-021-01596-4info:eu-repo/semantics/altIdentifier/doi/10.3758/s13428-021-01596-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:20Zoai:ri.conicet.gov.ar:11336/151725instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:20.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A logical framework to study concept-learning biases in the presence of multiple explanations
title A logical framework to study concept-learning biases in the presence of multiple explanations
spellingShingle A logical framework to study concept-learning biases in the presence of multiple explanations
Abriola, Sergio Alejandro
CONCEPT LEARNING
LEARNING BIASES
PROPOSITIONAL LOGIC
title_short A logical framework to study concept-learning biases in the presence of multiple explanations
title_full A logical framework to study concept-learning biases in the presence of multiple explanations
title_fullStr A logical framework to study concept-learning biases in the presence of multiple explanations
title_full_unstemmed A logical framework to study concept-learning biases in the presence of multiple explanations
title_sort A logical framework to study concept-learning biases in the presence of multiple explanations
dc.creator.none.fl_str_mv Abriola, Sergio Alejandro
Tano, Pablo
Romano, Sergio Gaston
Figueira, Santiago
author Abriola, Sergio Alejandro
author_facet Abriola, Sergio Alejandro
Tano, Pablo
Romano, Sergio Gaston
Figueira, Santiago
author_role author
author2 Tano, Pablo
Romano, Sergio Gaston
Figueira, Santiago
author2_role author
author
author
dc.subject.none.fl_str_mv CONCEPT LEARNING
LEARNING BIASES
PROPOSITIONAL LOGIC
topic CONCEPT LEARNING
LEARNING BIASES
PROPOSITIONAL LOGIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning.
Fil: Abriola, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
description When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of different complexity and using different features. Importantly, our framework fully controls which minimal rules compete to explain the examples and is able to recover the features used by the participant to build the classification rule, without relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior attention to specific sets of features during learning.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151725
Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago; A logical framework to study concept-learning biases in the presence of multiple explanations; Springer; Behavior Research Methods; 6-2021; 1-19
1554-3528
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151725
identifier_str_mv Abriola, Sergio Alejandro; Tano, Pablo; Romano, Sergio Gaston; Figueira, Santiago; A logical framework to study concept-learning biases in the presence of multiple explanations; Springer; Behavior Research Methods; 6-2021; 1-19
1554-3528
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.3758/s13428-021-01596-4
info:eu-repo/semantics/altIdentifier/doi/10.3758/s13428-021-01596-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269089900265472
score 13.13397