Greedy Seeding Procedure for GAs Solving a Strip Packing Problem
- Autores
- Salto, Carolina; Alba, Enrique; Molina, Juan M.; Leguizamon, Guillermo Nolasco
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, the two-dimensional strip packing problem with 3-stage level patterns is tackled using genetic algorithms (GAs). We evaluate the usefulness of a knowledge-based greedy seeding procedure used for creating the initial population. This is motivated by the expectation that the seeding will speed up the GA by starting the search in promising regions of the search space. An analysis of the impact of the seeded initial population is offered, together with a complete study of the influence of these modifications on the genetic search. The results show that the use of an appropriate seeding of the initial population outperforms existing GA approaches on all the used problem instances, for all the metrics used, and in fact it represents the new state of the art for this problem.
Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Ingeniería. Departamento de Informática; Argentina
Fil: Alba, Enrique. Universidad de Malaga. Escuela Técnica Superior de Ingeniería Informática.; España
Fil: Molina, Juan M.. Universidad de Malaga. Escuela Técnica Superior de Ingeniería Informática.; España
Fil: Leguizamon, Guillermo Nolasco. Universidad Nacional de San Luis; Argentina - Materia
-
GENETIC ALGORITHMS
STRIP PACKING
SEEDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/158396
Ver los metadatos del registro completo
id |
CONICETDig_b781369e011bc34ab294c3a644d1cac9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/158396 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Greedy Seeding Procedure for GAs Solving a Strip Packing ProblemSalto, CarolinaAlba, EnriqueMolina, Juan M.Leguizamon, Guillermo NolascoGENETIC ALGORITHMSSTRIP PACKINGSEEDINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, the two-dimensional strip packing problem with 3-stage level patterns is tackled using genetic algorithms (GAs). We evaluate the usefulness of a knowledge-based greedy seeding procedure used for creating the initial population. This is motivated by the expectation that the seeding will speed up the GA by starting the search in promising regions of the search space. An analysis of the impact of the seeded initial population is offered, together with a complete study of the influence of these modifications on the genetic search. The results show that the use of an appropriate seeding of the initial population outperforms existing GA approaches on all the used problem instances, for all the metrics used, and in fact it represents the new state of the art for this problem.Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Ingeniería. Departamento de Informática; ArgentinaFil: Alba, Enrique. Universidad de Malaga. Escuela Técnica Superior de Ingeniería Informática.; EspañaFil: Molina, Juan M.. Universidad de Malaga. Escuela Técnica Superior de Ingeniería Informática.; EspañaFil: Leguizamon, Guillermo Nolasco. Universidad Nacional de San Luis; ArgentinaSociedad Iberoamericana de Inteligencia Artificial2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158396Salto, Carolina; Alba, Enrique; Molina, Juan M.; Leguizamon, Guillermo Nolasco; Greedy Seeding Procedure for GAs Solving a Strip Packing Problem; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 12; 40; 12-2008; 73-851137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/public/Vol.1-14.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:17:40Zoai:ri.conicet.gov.ar:11336/158396instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:17:40.358CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem |
title |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem |
spellingShingle |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem Salto, Carolina GENETIC ALGORITHMS STRIP PACKING SEEDING |
title_short |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem |
title_full |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem |
title_fullStr |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem |
title_full_unstemmed |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem |
title_sort |
Greedy Seeding Procedure for GAs Solving a Strip Packing Problem |
dc.creator.none.fl_str_mv |
Salto, Carolina Alba, Enrique Molina, Juan M. Leguizamon, Guillermo Nolasco |
author |
Salto, Carolina |
author_facet |
Salto, Carolina Alba, Enrique Molina, Juan M. Leguizamon, Guillermo Nolasco |
author_role |
author |
author2 |
Alba, Enrique Molina, Juan M. Leguizamon, Guillermo Nolasco |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
GENETIC ALGORITHMS STRIP PACKING SEEDING |
topic |
GENETIC ALGORITHMS STRIP PACKING SEEDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, the two-dimensional strip packing problem with 3-stage level patterns is tackled using genetic algorithms (GAs). We evaluate the usefulness of a knowledge-based greedy seeding procedure used for creating the initial population. This is motivated by the expectation that the seeding will speed up the GA by starting the search in promising regions of the search space. An analysis of the impact of the seeded initial population is offered, together with a complete study of the influence of these modifications on the genetic search. The results show that the use of an appropriate seeding of the initial population outperforms existing GA approaches on all the used problem instances, for all the metrics used, and in fact it represents the new state of the art for this problem. Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Ingeniería. Departamento de Informática; Argentina Fil: Alba, Enrique. Universidad de Malaga. Escuela Técnica Superior de Ingeniería Informática.; España Fil: Molina, Juan M.. Universidad de Malaga. Escuela Técnica Superior de Ingeniería Informática.; España Fil: Leguizamon, Guillermo Nolasco. Universidad Nacional de San Luis; Argentina |
description |
In this paper, the two-dimensional strip packing problem with 3-stage level patterns is tackled using genetic algorithms (GAs). We evaluate the usefulness of a knowledge-based greedy seeding procedure used for creating the initial population. This is motivated by the expectation that the seeding will speed up the GA by starting the search in promising regions of the search space. An analysis of the impact of the seeded initial population is offered, together with a complete study of the influence of these modifications on the genetic search. The results show that the use of an appropriate seeding of the initial population outperforms existing GA approaches on all the used problem instances, for all the metrics used, and in fact it represents the new state of the art for this problem. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/158396 Salto, Carolina; Alba, Enrique; Molina, Juan M.; Leguizamon, Guillermo Nolasco; Greedy Seeding Procedure for GAs Solving a Strip Packing Problem; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 12; 40; 12-2008; 73-85 1137-3601 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/158396 |
identifier_str_mv |
Salto, Carolina; Alba, Enrique; Molina, Juan M.; Leguizamon, Guillermo Nolasco; Greedy Seeding Procedure for GAs Solving a Strip Packing Problem; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 12; 40; 12-2008; 73-85 1137-3601 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/public/Vol.1-14.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083325723148288 |
score |
13.22299 |